What is the Limit of xln(x) - x as x Approaches 0?

  • Thread starter Thread starter blessedcurse
  • Start date Start date
  • Tags Tags
    L'hopital's rule
blessedcurse
Messages
6
Reaction score
0

Homework Statement


What is the value of xln(x)-x when x=0?

Homework Equations


I'm assuming you do L'Hopital's

The Attempt at a Solution


I'm assuming you factor out the x, leaving:

x(ln(x)-1)

but that's still not in the form of \frac{\infty}{\infty} or \frac{0}{0}

Would you do:

lim_{x\rightarrow\infty}\frac{(ln(x)-1)}{x^{(-1)}}

=lim_{x\rightarrow\infty}\frac{(1/x)}{1}

=0

??
 
Physics news on Phys.org
blessedcurse said:

Homework Statement


What is the value of xln(x)-x when x=0?

Homework Equations


I'm assuming you do L'Hopital's

The Attempt at a Solution


I'm assuming you factor out the x, leaving:

x(ln(x)-1)

but that's still not in the form of \frac{\infty}{\infty} or \frac{0}{0}

Would you do:

lim_{x\rightarrow\infty}\frac{(ln(x)-1)}{x^{(-1)}}

=lim_{x\rightarrow\infty}\frac{(1/x)}{1}

=0

??

\lim_{x\to 0} x\ln(x)-x=(\lim_{x\to 0} x\ln(x))-(\lim_{x\to 0} x) :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top