Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Lie-Algebra, Generators

  1. Mar 26, 2007 #1
    After reading some threads I decided to post my question, since I couldn't find an sufficient answer.
    In general the generators of a lie group combined with the compostion [A,B]=ifB build a Lie-Algebra. Where the Generators build the base of the vectorspace.
    In a common vectorspace you can find a orthonormalbase, and the scalarproduct defines the metrik. How does the comutation relations fit in this concept? I know that the comutation relations show if two entities can be measured together with any accuracy, but what is their meaning referring to the understanding of a algebra?
    I have the feeling I disorganised the whole concept...
    Last edited: Mar 27, 2007
  2. jcsd
  3. Mar 27, 2007 #2
    When you transform your state vectors you use unitary operators, which are expressed as exponentials of Hermitian generators. All these operators represent together a set of space-time symmetries (rotation, displacement in time and space, velocity along an axis), which form a group. Now you can multiply these group elements, and to check if the commute you expand to small order and look how the generators behave to each other, if they commute. These form Lie Algebras.
  4. Mar 27, 2007 #3

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    A Lie algebra' s Killing form is used to define a metric on the algebra. If the algebra is semi-simple, the metric is non-degenerate. If the algeba generates a compact Lie group, the metric is definite.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook