cesiumfrog said:
... should illustrate the idea that surface brightness is a constant of the source.
I only marginally grasp the equation, but I think it may show that the suface brightness can not change regardless of whether you move closer or further. If so, it can be shown in a lucid explanation. If you double the distance between you and the object, the amount of from the object will be reduced as the inverse square of the distance traveled. But, the apparent size of the object will also be reduced by the inverse square. Therefore, they will cancel and the same surface brightness will be seen.
However, on second thought, the theorem seems to deal more with the light angle. I learned that if a magnfiying glass was placed in front of an infinitely wide isotropic light source, it would not be able to burn a leaf any faster than without a magnifying glass. [I recently bet an ice cream that a magnifying glass at the sun would burn a leaf faster than without using a magnifying glass. Surprisingly, it will.] Since only the parallel rays into the glass would be concentrated onto the leaf, the other rays will be concentrated elsewhere due to their angle. Moving the glass further from the source will increase the number of parallel rays but fewer photons will arrive. Is this a better explanation of the theorem?
Now take two observers who have adjacent telescopes, if their optics are perfect, and light had no obstructions from an extended object, they will each see the object at the same surface brightness (per unit area). The total flux will be twice that of just one observer. If we could take the flux from one and add it to the other, we would double the surface brightness seen. This, hopefully, is a little different than usuall.
I thought I had a handle on the inability to increase surface brightness by using the zeroth law. Using a magnifying glass to concentrate light onto something, say a leaf, we can realize that the spot can not be hotter or brighter than the source because if it could, then we could reverse the light and produce a hotter source; which, of course, is impossible.
However, once again, if we augment the light from one area onto another, we may be able to produce a brighter image. We would be taken energy, i.e. photons, from one area and routing them onto another.
This works easy enough for mass. My rain gauge has a large opening at the top to increase the normal accumulation of drops in order to amplilfy the volume received. Here, we can see the flux density is increased by the funnel action at the top. We could use numerous examples, of course. The temperature of the water, ignoring the P.E. difference, is not higher, so the 2nd law is fine. Only an increase in flux has been demonstrated. Yet, we can not do it with photons and maintain an image, for some reason.
The relation to entropy http://www.av8n.com/physics/phase-space-thin-lens.htm" has to do with how small an area you can focus light onto.. and hence, whether you can use sunlight to heat something above the temperature of the sun.
Ooohh, there she be, apparently.

Thanks, that has to be it. [Let me babble a little and see if anything sticks.]
Yet, consider this gedankenexperiment... Let's take mirrors and surround one hemisphere of the sun. All the mirrors will concentrate their reflected light onto one small spot on the surface. Will this not increase the surface temperature at that spot? Albeit, even if we cut a hole in the middle of the mirrors to allow observation of a solar area, unfortunately, I see no way to redirect the light into the path seen by a telescope. As for ideas, I suppose the rain gage holds more water, so to speak.
So, in my limited mind, it still makes sense that if we could combine the light of two scopes of equal aperture, then we could double the brightness. Yet, I can't see how. One would think larger aperture would work, as per the rain gauge model. I still don't grasp why not.
Perhaps, if I understood the dX/dt aspect of phase space, I would see why light is so different to restrict flux concentration.
If we increase photon flux onto an object, will it increase temperature? Maybe this is a good approach.