Sorry to be unclear. Consider the mechanical vibrations of a tuning fork. In one reference frame, say the Earth's surface, the frequency of the vibration is a certain value, depending on the properties of the tuning fork. To an observer far from the Earth, is the frequency (measured to, let's say, 23 significant figures) of the tuning fork the same? I ask this question because I know that time, distance, and mass are different in different reference frames (surface of Earth versus off Earth). Consider also a pendulum. For any given pendulum with constant physical parameters, the period, or frequency of the oscillations, is determined by the gravitational field (the gravitational constant). So, a pendulum at sea level oscillates slightly faster than a pendulum on Mt. Everest. Light, in a classical view, is also an oscillation, but of course it is not like a tuning fork or a pendulum, and gravity has essentially no effect on the atomic level. But still, I believe asking if the light frequency varies in a gravitational field is a legitimate question. I know that the speed of light with respect to an observer, is always measured as c. I also know that the frequency of light with respect to an observer is not measured the same (e.g, red shift). So, is the energy of light dependent on reference frame? Perhaps the best way to ask my question is: It is well known that the half-life of a radioactive atom, say a gamma emitter, is longer on the Earth's surface than in outer space, due to time running slower on the Earth's surface. That is, the decay constant is changed. But is the energy or frequency (Energy = Planck's constant times frequency) of the gamma ray changed, due to relativistic effects? I can't make this any clearer, but if you still don't understand the question, or if you think it is nonsense, please ignore. I will not be offended. I frequently frustrate other physicists.