Lightlike geodesic in AdS5xS5, plane wave background

physicus
Messages
52
Reaction score
3

Homework Statement



My question is about a step in the lecture notes [http://arxiv.org/abs/hep-th/0307101] on page 6, and it is probably quite trivial:

I want to see why a lightlike particle in AdS_5\times S^5 sees the metric as plane wave background. The metric is
ds^2=R^2(-dt^2 \cosh^2\rho+d\rho^2+\sinh^2\rho \,d\Omega_3^2+d\psi^2\cos^2\theta+d\theta^2+\sin^2\theta\,\Omega_3'^2)

In order to study the metric close to a lightlike geodesic we make the follwoing change of coordinates:
{x}^+=\frac{1}{2\mu}(t+\psi), {x}^-=\frac{\mu R^2}{2}(t-\psi), \rho=\frac{r}{R}, \theta=\frac{y}{R}

I am supposed to get in the R\to\infty limit
ds^2=R^2(-\mu^2(dx^+)^2+\mu^2(dx^+)^2)+(-2dx^+dx^--\mu^2r^2(dx^+)^2+dr^2+r^2d\Omega_3^2 -2dx^+dx^--\mu^2y^2(dx^+)^2+dy^2+y^2d\Omega'{}_3^2)+\mathcal{O}(R^{-2})

This is not the final result, but from there on I know how to continue.

Homework Equations



\cosh x=1+\frac{1}{2}x^2+\mathcal{O}(x^4), \cos x=1-\frac{1}{2}x^2+\mathcal{O}(x^4)
\Rightarrow \cosh^2 x = 1+x^2+\mathcal{O}(x^4), \cosh^2 x = 1-x^2+\mathcal{O}(x^4)

The Attempt at a Solution



I can expand in \rho, \theta, since they will be small in the R \to \infty limit:
ds^2=R^2(-dt^2 \cosh^2\rho+d\rho^2+\sinh^2\rho \,d\Omega_3^2+d\psi^2\cos^2\theta+d\theta^2+\sin^2\theta\,\Omega'{}_3^2)
=R^2(-dt^2(1+\rho^2)+d\rho^2+\rho^2d\Omega_3^2+d\psi^2(1-\theta^2)+d\theta^2+\theta^2d\Omega'{}_3^2)+\mathcal{O}(R^{-2})
=R^2(-dt^2+d\psi^2)+(-dt^2r^2+dr^2+r^2d\Omega_3^2-d\psi^2y^2+dy^2+y^2d\Omega'{}_3^2=+\mathcal{O}(R^{-2})

Now I use:
dx^+dx^-=\frac{1}{2\mu}(dt+d\psi)\frac{\mu R^2}{2}(dt-d\psi)=\frac{R^2}{4}(dt^2-d\psi^2)
So the first term above is R^2(-dt^2+d\psi^2)=-4dx^+dx^-.

However, I do not know where all the (dx^+)^2 in the solution are coming from, since
(dx^+)^2=\frac{1}{4\mu^2}(dt^2+2dt\,d\psi+d\psi^2)
Where do these mixed dt\,d\psi terms come from?
 
Physics news on Phys.org
They come from quadratic terms in the expansion of cos and cosh that are finite in the scaling limit.
 
Thank you, but could you be a bit more precise, please. From comparing the given result and what I got so far I should be able to show:
-dt^2r^2-d\psi^2y^2=R^2(-\mu^2(dx^+)^2+\mu^2(dx^+)^2)-\mu^2r^2(dx^+)^2-\mu^2y^2(dx^+)^2
The left hand sinde are those quadratic terms from the expansion of \cos and \cosh. Since the first part of the right hand side is 0 anyways, I don't mind to much that I don't get that one, but I still don't see the equality:
-\mu^2r^2(dx^+)^2-\mu^2y^2(dx^+)^2=-\frac{r^2+y^2}{4}(dt^2+2dt\,d\psi+d\psi^2)
Why is this equal to -r^2dt^2-y^2d\psi^2?
 
physicus said:
Thank you, but could you be a bit more precise, please. From comparing the given result and what I got so far I should be able to show:
-dt^2r^2-d\psi^2y^2=R^2(-\mu^2(dx^+)^2+\mu^2(dx^+)^2)-\mu^2r^2(dx^+)^2-\mu^2y^2(dx^+)^2
The left hand sinde are those quadratic terms from the expansion of \cos and \cosh. Since the first part of the right hand side is 0 anyways, I don't mind to much that I don't get that one, but I still don't see the equality:
-\mu^2r^2(dx^+)^2-\mu^2y^2(dx^+)^2=-\frac{r^2+y^2}{4}(dt^2+2dt\,d\psi+d\psi^2)
Why is this equal to -r^2dt^2-y^2d\psi^2?

You are making the mistake of working backwards from the answer, when there are terms that get dropped in the limit. You can't obtain these original terms from just the finite part, hence your confusion. Express ##t,\psi## in terms of ##x^\pm## and just write down what

$$-dt^2r^2-d\psi^2y^2$$

works out to be.
 
Perfect, thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top