transgalactic
- 1,386
- 0
<br />
\liminf _{n->\infty} x_n+\limsup _{n->\infty} y_n\leq \limsup _{n->\infty} (x_n+y_n)\leq\limsup _{n->\infty} x_n+\limsup _{n->\infty} y_n\\<br />
proving the first part:
<br /> \limsup _{n->\infty} (x_n+y_n)\leq\limsup _{n->\infty} x_n+\limsup _{n->\infty} y_n\\<br />
lim sup is the supremum of all the limits of the subsequences
this is true because of some law regarding the sum of two subsequences
correct??
proving the first part:
<br /> \limsup _{n->\infty} (x_n+y_n)\leq\limsup _{n->\infty} x_n+\limsup _{n->\infty} y_n\\<br />
lim sup is the supremum of all the limits of the subsequences
this is true because of some law regarding the sum of two subsequences
correct??