- #1

- 1,395

- 0

\liminf _{n->\infty} x_n+\limsup _{n->\infty} y_n\leq \limsup _{n->\infty} (x_n+y_n)\leq\limsup _{n->\infty} x_n+\limsup _{n->\infty} y_n\\

[/tex]

proving the first part:

[tex]

\limsup _{n->\infty} (x_n+y_n)\leq\limsup _{n->\infty} x_n+\limsup _{n->\infty} y_n\\

[/tex]

lim sup is the supremum of all the limits of the subsequences

this is true because of some law regarding the sum of two subsequences

correct??