Limit, Infinity, Radical

  • Thread starter credico
  • Start date
  • #1
credico
6
0

Homework Statement


Evaluate the following limits:

lim sqrt(x^2-3x+1)-x
x->[tex]\infty[/tex]


lim sqrt(x^2-3x+1)-x
x->-[tex]\infty[/tex]

2. The attempt at a solution

http://img816.imageshack.us/img816/9995/limitproblem11.jpg [Broken]

We have to enter in the answers online into a program that tells us if we're right or wrong. I got the limit going to positive infinity correct, but I don't know what I am doing wrong going to negative infinity.
 
Last edited by a moderator:

Answers and Replies

  • #2
hunt_mat
Homework Helper
1,760
27
Take out a factor of x^2 from the square root and expand [tex]\sqrt{1+X}[/tex] as a power series and that should solve the problem for you.
 
  • #3
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,603
1,190

Homework Statement


Evaluate the following limits:

limx→-∞ sqrt(x^2-3x+1)-x


2. The attempt at a solution

We have to enter in the answers online into a program that tells us if we're right or wrong. I got the limit going to positive infinity correct, but I don't know what I am doing wrong going to negative infinity.

You did a fine job recognizing that [tex]\frac{1}{x}=-\,\frac{1}{\sqrt{x^2}}[/tex] for x < 0.

Once you get to [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)=\lim_{x\to -\infty}\left(\frac{-3x+1}{x+\sqrt{x^2-3x+1}}\right)\,,[/tex] try using L'Hôpital's rule.

Added during Edit:

Wait! Look at the original! [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)[/tex].

[tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}\right)=+\infty[/tex]

and

[tex]\lim_{x\to -\infty}\left(-x\right)=+\infty[/tex]
 
Last edited:
  • #4
credico
6
0
You did a fine job recognizing that [tex]\frac{1}{x}=-\,\frac{1}{\sqrt{x^2}}[/tex] for x < 0.

Once you get to [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)=\lim_{x\to -\infty}\left(\frac{-3x+1}{x+\sqrt{x^2-3x+1}}\right)\,,[/tex] try using L'Hôpital's rule.

Added during Edit:

Wait! Look at the original! [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)[/tex].

[tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}\right)=+\infty[/tex]

and

[tex]\lim_{x\to -\infty}\left(-x\right)=+\infty[/tex]

Haven't learned L'Hopital's rule yet (I know what it is but at this point I think they want us to do it a certain way first).

In regards to what you posted in your edit: You used the Limit Laws to separate the two, but how did you calculate the radical limit? Just by plugging in infinity (or looking at what it does near infinity?) Is that allowed? Are you certain there isn't something that can mislead me by doing this, at least in this case?

Thanks.

Your answer was right by the way. I guess if it's continuous, by definition: lim f(x) as x ->a = lim f(a). It just seems a bit odd since there's that radical floating over top.
 
Last edited:
  • #5
HallsofIvy
Science Advisor
Homework Helper
43,021
970
You did a fine job recognizing that [tex]\frac{1}{x}=-\,\frac{1}{\sqrt{x^2}}[/tex] for x < 0.

Once you get to [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)=\lim_{x\to -\infty}\left(\frac{-3x+1}{x+\sqrt{x^2-3x+1}}\right)\,,[/tex] try using L'Hôpital's rule.
Better: Divide both numerator and denominator by x to get
[tex]\frac{-3+ \frac{1}{x}}{\sqrt{1- \frac{3}{x}+ \frac{1}{x^2}}}[/tex]
Of course, as x goes to infinity, 1/x or [itex]1/x^2[/itex] goes to 0. For the case were x is going to negative infinity, divide by -x (which will be positive) so that you have no problem with it inside the square root.

Added during Edit:

Wait! Look at the original! [tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}-x\right)[/tex].

[tex]\lim_{x\to -\infty}\left(\sqrt{x^2-3x+1}\right)=+\infty[/tex]

and

[tex]\lim_{x\to -\infty}\left(-x\right)=+\infty[/tex]
 

Suggested for: Limit, Infinity, Radical

Replies
27
Views
192
Replies
26
Views
1K
Replies
44
Views
2K
Replies
14
Views
460
  • Last Post
Replies
5
Views
151
Replies
19
Views
844
  • Last Post
Replies
20
Views
246
Replies
15
Views
699
  • Last Post
Replies
14
Views
1K
Top