Drako Amorim
- 11
- 4
I'm trying to verify that: \lim_{(x,y)\rightarrow (0,0)}\frac{\sin (x^{3}+y^{3})}{x+y^{2}}=0.
0<\sqrt{x^2+y^2}<\delta\rightarrow |\frac{\sin (x^{3}+y^{3})}{x+y^{2}}|<\epsilon
0\leq |\sin (x^{3}+y^{3})|\leq |(x^{3}+y^{3})|\leq |x|x^2+|y|y^2
|\frac{\sin (x^{3}+y^{3})}{x+y^{2}}|\leq \frac{ |x|x^2+|y|y^2}{|x+y^{2}|}
So I'm stuck here because of the denominator |x+y²|. What can I do?
0<\sqrt{x^2+y^2}<\delta\rightarrow |\frac{\sin (x^{3}+y^{3})}{x+y^{2}}|<\epsilon
0\leq |\sin (x^{3}+y^{3})|\leq |(x^{3}+y^{3})|\leq |x|x^2+|y|y^2
|\frac{\sin (x^{3}+y^{3})}{x+y^{2}}|\leq \frac{ |x|x^2+|y|y^2}{|x+y^{2}|}
So I'm stuck here because of the denominator |x+y²|. What can I do?