Limit of $\sqrt{x+1} - \sqrt{x}$ as $x \to \infty$

Rectifier
Gold Member
Messages
313
Reaction score
4
The problem
$$ \lim_{x \rightarrow \infty} \left( \sqrt{x+1} - \sqrt{x} \right) $$

The attempt
## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{x+1 - x }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{x \left( \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} \right) } = \frac{1}{x} \frac{1 }{ \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} } \\ \rightarrow 0 \cdot \frac{1}{0 + 0} ## for ## x \rightarrow \infty ## division with 0 is undefined. Can somone help me calculate this limit.

And no, I can't use l'Hopitals rule so please don't mention it in this thread.
 
Physics news on Phys.org
Rectifier said:
The problem
$$ \lim_{x \rightarrow \infty} \left( \sqrt{x+1} - \sqrt{x} \right) $$

The attempt
## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{x+1 - x }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{x \left( \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} \right) } = \frac{1}{x} \frac{1 }{ \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} } \\ \rightarrow 0 \cdot \frac{1}{0 + 0} ## for ## x \rightarrow \infty ## division with 0 is undefined. Can somone help me calculate this limit.

And no, I can't use l'Hopitals rule so please don't mention it in this thread.

## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{\left( \sqrt{x+1} + \sqrt{x} \right) } ##.

Until here, what you do leads to the answer. When you fill in infinity right now, you don't get an undetermined form, so the answer is ...?
 
Rectifier said:
The problem
$$ \lim_{x \rightarrow \infty} \left( \sqrt{x+1} - \sqrt{x} \right) $$

The attempt
## \left( \sqrt{x+1} - \sqrt{x} \right) = \frac{\left( \sqrt{x+1} - \sqrt{x} \right)\left( \sqrt{x+1} + \sqrt{x} \right) }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{x+1 - x }{\left( \sqrt{x+1} + \sqrt{x} \right) } = \frac{1 }{x \left( \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} \right) } = \frac{1}{x} \frac{1 }{ \sqrt{\frac{1}{x}+\frac{1}{x^2}} + \sqrt{\frac{1}{x}} } \\ \rightarrow 0 \cdot \frac{1}{0 + 0} ## for ## x \rightarrow \infty ## division with 0 is undefined. Can somone help me calculate this limit.

And no, I can't use l'Hopitals rule so please don't mention it in this thread.

Note that
\frac{x+1-x}{\sqrt{x}+\sqrt{x+1}} = \frac{1}{\sqrt{x}+\sqrt{x+1}}
In the second form, what happens to the numerator when ##x \to +\infty##? What happens to the denominator?

What dictator forbids you from using l'Hospital's rule?
 
Ray Vickson said:
What dictator forbids you from using l'Hospital's rule?
I haven't worked this problem, but sometimes L'Hopital's rule doesn't get you anywhere. I've seen similar problems where two applications of L'H gets you right back to where you started.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top