gede
- 18
- 0
I have a limit problem. This is the problem:
\lim_{x \to 2} \frac{\tan (2 - \sqrt{2x})}{x^2 - 2x}
The solution is
\lim_{x \to 2} \frac{\tan (2 - \sqrt{2x})}{x^2 - 2x}
= \lim_{x - 2 \to 0} \frac{\tan [(2 - \sqrt{2x}) × \frac{2 + \sqrt{2x}}{2 + \sqrt{2x}} ]}{x(x - 2)}
= \lim_{x - 2 \to 0} \frac{\tan [ \frac{-2(x - 2)}{2 + \sqrt{2x}} ] }{x(x - 2)}
Let ##p = x - 2##
and ##2 + \sqrt{2x} = 2 + \sqrt{2⋅2} = 2 + \sqrt{4} = 2 + 2 = 4##
Then
\lim_{x - 2 \to 0} \frac{\tan [ \frac{-2(x - 2)}{2 + \sqrt{2x}} ] }{x(x - 2)}
= \lim_{p \to 0} \frac{\tan [-\frac{1}{2}p]}{2p}
= -\frac{1}{4}
Is this correct?
[NOTE: moved to this forum by mentor hence no homework template]
\lim_{x \to 2} \frac{\tan (2 - \sqrt{2x})}{x^2 - 2x}
The solution is
\lim_{x \to 2} \frac{\tan (2 - \sqrt{2x})}{x^2 - 2x}
= \lim_{x - 2 \to 0} \frac{\tan [(2 - \sqrt{2x}) × \frac{2 + \sqrt{2x}}{2 + \sqrt{2x}} ]}{x(x - 2)}
= \lim_{x - 2 \to 0} \frac{\tan [ \frac{-2(x - 2)}{2 + \sqrt{2x}} ] }{x(x - 2)}
Let ##p = x - 2##
and ##2 + \sqrt{2x} = 2 + \sqrt{2⋅2} = 2 + \sqrt{4} = 2 + 2 = 4##
Then
\lim_{x - 2 \to 0} \frac{\tan [ \frac{-2(x - 2)}{2 + \sqrt{2x}} ] }{x(x - 2)}
= \lim_{p \to 0} \frac{\tan [-\frac{1}{2}p]}{2p}
= -\frac{1}{4}
Is this correct?
[NOTE: moved to this forum by mentor hence no homework template]
Last edited by a moderator: