ciubba
- 65
- 2
Homework Statement
Prove lim_{x->4}\frac{x-4}{\sqrt{x}-2}=4
Homework Equations
Epsilon\delta definition
The Attempt at a Solution
I can see that a direct evaluation at 4 leads to an indeterminate form, so:
\frac{x-4}{\sqrt{x}-2}*\frac{\sqrt{x}+2}{\sqrt{x}+2} \; \mbox{simplifies to} \; \sqrt{x}+2 \; \mbox{when} \; x \ne 4
Via epsilon\delta definition,
|\sqrt{x}+2-4|<\epsilon \; \mbox{whenever} \; |x-4|<\delta
Expanding the right side,
-\delta<x-4<\delta
-\delta+4<x<\delta+4
\sqrt{-\delta+4}<\sqrt{x}<\sqrt{\delta+4} \; \mbox{when} \; \delta \leq 4
\sqrt{-\delta+4}-2<\sqrt{x}-2<\sqrt{\delta+4}-2
Thus, \delta=min\{\sqrt{-\delta+4}-2,4,\sqrt{\delta+4}-2\}
Given this definition of delta, it is elementary to work backwards towards |\sqrt{x}+2|<\delta
Have I made any errors in my proof?