Limit x→0+ x^(1/x - 1): Is It Defined?

  • Thread starter Thread starter daniel_i_l
  • Start date Start date
  • Tags Tags
    Limit
daniel_i_l
Gold Member
Messages
864
Reaction score
0

Homework Statement


I was doing a problem and got to the following limit:
lim_{x \rightarrow 0^{+}} x^{\frac{1}{x} - 1} I calculated it and got 0 but when I calculated it here:
http://wims.unice.fr/wims/en_tool~analysis~function.en.html
It said that it wans't defined. Am I right?
Thanks.

Homework Equations


The Attempt at a Solution

 
Physics news on Phys.org
try the following:
lim_{x \rightarrow 0^{+}} x^{\frac{1}{x} - 1}=\lim_{x\rightarrow 0^{+}}e^{ln(x)^{\frac{1}{x}-1}}=\lim_{x\rightarrow\ 0^{+}} e^{\frac{1-x}{x}ln(x)}=e^{\lim_{x\rightarrow\ 0^{+}}\frac{1-x}{x} \lim_{x\rightarrow\ 0^{+}}ln(x)}=e^{\infty*(-\infty)}=e^{-\infty}=0
 
Thanks, that's what I did but the wims calculator confused me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top