Eus
- 93
- 0
Hi Ho!
Mmmm... I have a problem with this one:
\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}}
Using a computer graphics tool, I found that the result should be -1 by looking at the generated graph.
But if I do it by hands, I find 1 as follows:
\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}} = \lim_{x\rightarrow-\infty} \frac{x \frac{1}{x}}{\sqrt{z^2+x^2} \frac{1}{x}}
= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{\frac{z^2+x^2}{x^2}}}
= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{1+(\frac{z}{x})^2}}
= \frac{1}{\sqrt{1+(\frac{z}{-\infty})^2}}
= \frac{1}{\sqrt{1+0}}
= \frac{1}{1}
= 1
Would you please correct my mistake?
Thank you very much!

Mmmm... I have a problem with this one:
\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}}
Using a computer graphics tool, I found that the result should be -1 by looking at the generated graph.
But if I do it by hands, I find 1 as follows:
\lim_{x\rightarrow-\infty} \frac{x}{\sqrt{z^2+x^2}} = \lim_{x\rightarrow-\infty} \frac{x \frac{1}{x}}{\sqrt{z^2+x^2} \frac{1}{x}}
= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{\frac{z^2+x^2}{x^2}}}
= \lim_{x\rightarrow-\infty} \frac{1}{\sqrt{1+(\frac{z}{x})^2}}
= \frac{1}{\sqrt{1+(\frac{z}{-\infty})^2}}
= \frac{1}{\sqrt{1+0}}
= \frac{1}{1}
= 1
Would you please correct my mistake?
Thank you very much!

Last edited: