Limiting dist for sum of dependent and non-identical Bernoulli vars

  • Thread starter Thread starter PAHV
  • Start date Start date
  • Tags Tags
    Bernoulli Sum
PAHV
Messages
8
Reaction score
0
A Binomial distribution has a standard normal limiting distribution, i.e. (X-E[X])/se(X) -> N(0,1), where X is the sum of independent and identically distributed Bernoulli variables.

Does this hold even when
i) the Bernoulli variables are independent but non-identically distributed? That is, say that each Bernoulli variable have different survivor intensity and define X as the sum of these non-identical variables. I believe this distribution is called the Poisson-Binomial distribution. Do we have: (X-E[X])/se(X) -> N(0,1)?

ii) the Bernoulli variables are dependent and non-identically distributed? That is, say that each Bernoulli variable have different survivor intensity and that they are correlated. Define X as the sum of these non-identical variables. Do we have: (X-E[X])/se(X) -> N(0,1)?

The case ii) is what I'm mainly interested in. I'm pretty sure case i) holds, but isn't 100% case ii) holds. If it holds I would appreciate a reference to any paper or so since I need the conditions under which it holds.

Thanks!
 
Physics news on Phys.org
I would suggest, at least for (i), looking to see whether the conditions of the Lindeburg-Feller Central Limit Theorem are satisfied (I'm guessing they are but haven't worked through it). You can find an excellent discussion of this, and related theorems, in Robert J. Serfling's 'Approximation Theorems of Mathematical Statistics'. In my edition the discussions are on pages 28 through 32.

You could also look in Kai Lai Chung's `A Course In Probability Theory', which has a more extensive discussion of CLTs, including a section on dependent summands.
 
Yes, the Lindeberg-Feller CLT works fine for (i).

Does anyone have any idea for case (ii)? That is, is there any CLT for the case the bernoulli trials are dependent with different success probabilities.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top