Mosaness
- 92
- 0
1. Determine whether the sequence converges, and if so find it's limit.
{\frac{(n + 1)(n + 2)}{2n<sup>2</sup>}}
2. The attempt at a solution
lim n→∞ \frac{(n + 1)(n + 2)}{2n<sup>2</sup>}
= lim n →∞ \frac{(n<sup>2</sup>+ 3n + 2)}{2n<sup>2</sup>}
= lim n→∞ \frac{n<sup>2</sup>}{2n<sup>2</sup>} + \frac{3n}{2n<sup>2</sup>} + \frac{1}{n<sup>2</sup>}
= lim n→∞ \frac{1}{2} + \frac{3}{2n} + \frac{1}{n<sup>2</sup>}
= lim n→∞ \frac{1}{2} + lim n→∞\frac{3}{2n} + lim n→∞\frac{1}{n<sup>2</sup>}
Now I am not too sure about the next part, but here is how I proceeded:
lim n→∞ \frac{1}{2} +\frac{3}{2} lim n→∞ \frac{\frac{1}{n}}{\frac{n}{n}} + lim n→∞ \frac{\frac{1}{n<sup>2</sup>}}{\frac{n<sup>2</sup>}{n<sup>2</sup>}}
= \frac{1}{2} + 0 + 0
∴ The limit converges to \frac{1}{2}
{\frac{(n + 1)(n + 2)}{2n<sup>2</sup>}}
2. The attempt at a solution
lim n→∞ \frac{(n + 1)(n + 2)}{2n<sup>2</sup>}
= lim n →∞ \frac{(n<sup>2</sup>+ 3n + 2)}{2n<sup>2</sup>}
= lim n→∞ \frac{n<sup>2</sup>}{2n<sup>2</sup>} + \frac{3n}{2n<sup>2</sup>} + \frac{1}{n<sup>2</sup>}
= lim n→∞ \frac{1}{2} + \frac{3}{2n} + \frac{1}{n<sup>2</sup>}
= lim n→∞ \frac{1}{2} + lim n→∞\frac{3}{2n} + lim n→∞\frac{1}{n<sup>2</sup>}
Now I am not too sure about the next part, but here is how I proceeded:
lim n→∞ \frac{1}{2} +\frac{3}{2} lim n→∞ \frac{\frac{1}{n}}{\frac{n}{n}} + lim n→∞ \frac{\frac{1}{n<sup>2</sup>}}{\frac{n<sup>2</sup>}{n<sup>2</sup>}}
= \frac{1}{2} + 0 + 0
∴ The limit converges to \frac{1}{2}