mag487
- 6
- 0
I understand that the limit of the sum of two sequences equals the sum of the sequences' limis: \displaysyle \lim_{n\rightarrow\infty} (a_{n} + b_{n}) = \lim_{n\rightarrow\infty}a_{n} + \lim_{n\rightarrow\infty}b_{n}. Similar results consequenly hold for sums of three sequences, four sequences, etc. (Call this the "finite distributive property.") But what about the sum of countably many sequences? Given the sequences \{a_{i} (n)\}, is it the case that
\displaystyle \lim_{n\rightarrow\infty} \sum_{i=1}^{\infty} a_{i}(n) = \sum_{i=1}^{\infty} \lim_{n\rightarrow\infty}a_{i}(n) ?
If not, are there any extra conditions on the sequences sufficient to make the equality hold? Any necessary and sufficient ones? I have an argument that if if both sides of the equality are finite, then the it holds. However, I've very likely made a mistake and would appreciate it if you guys could/would point out any errors.
Let \displaystyle L := \Sigma_{i=1}^{\infty} \lim_{n\rightarrow\infty}a_{i}(n). So \displaysyle \forall \epsilon > 0 \exists S \forall s \geq S \ |L - \Sigma_{i=1}^{s}\lim_{n\rightarrow\infty}a_{i}(n)| < \frac{\epsilon}{2}. Also let L_{n} := \Sigma_{i=1}^{\infty}a_{i}(n). We now therefore have, given the same \frac{\epsilon}{2} as before, \forall T \exists t \geq T \ |L_{n} - \Sigma_{i=1}^{t} a_{i}(n) | < \frac{\epsilon}{2}. Taking n to the limit on both sides yields \displaystyle \lim_{n\rightarrow\infty} |L_{n} - \Sigma_{i=1}^{t} a_{i}(n) | = |\lim_{n\rightarrow\infty}L_{n} - \Sigma_{i=1}^{t} \lim_{n\rightarrow\infty} a_{i}(n) | \leq \frac{\epsilon}{2} (by the finite distributive property). Finally, define L_{0} := \lim_{n\rightarrow\infty}L_{n}, \ U := \max(S, T). Then for each u \geq U, we have both |L - \Sigma_{i=1}^{u} \lim_{n\rightarrow\infty} a_{i}(n) | < \frac{\epsilon}{2} and |L_{0} - \Sigma_{i=1}^{u} \lim_{n\rightarrow\infty} a_{i}(n) | \leq \frac{\epsilon}{2}. By the triangle inequality, then, |L - L_{0}| < \epsilon. Since epsilon was arbitrary, L = L_{0}.
What about the cases where the sides aren't finite?
\displaystyle \lim_{n\rightarrow\infty} \sum_{i=1}^{\infty} a_{i}(n) = \sum_{i=1}^{\infty} \lim_{n\rightarrow\infty}a_{i}(n) ?
If not, are there any extra conditions on the sequences sufficient to make the equality hold? Any necessary and sufficient ones? I have an argument that if if both sides of the equality are finite, then the it holds. However, I've very likely made a mistake and would appreciate it if you guys could/would point out any errors.
Let \displaystyle L := \Sigma_{i=1}^{\infty} \lim_{n\rightarrow\infty}a_{i}(n). So \displaysyle \forall \epsilon > 0 \exists S \forall s \geq S \ |L - \Sigma_{i=1}^{s}\lim_{n\rightarrow\infty}a_{i}(n)| < \frac{\epsilon}{2}. Also let L_{n} := \Sigma_{i=1}^{\infty}a_{i}(n). We now therefore have, given the same \frac{\epsilon}{2} as before, \forall T \exists t \geq T \ |L_{n} - \Sigma_{i=1}^{t} a_{i}(n) | < \frac{\epsilon}{2}. Taking n to the limit on both sides yields \displaystyle \lim_{n\rightarrow\infty} |L_{n} - \Sigma_{i=1}^{t} a_{i}(n) | = |\lim_{n\rightarrow\infty}L_{n} - \Sigma_{i=1}^{t} \lim_{n\rightarrow\infty} a_{i}(n) | \leq \frac{\epsilon}{2} (by the finite distributive property). Finally, define L_{0} := \lim_{n\rightarrow\infty}L_{n}, \ U := \max(S, T). Then for each u \geq U, we have both |L - \Sigma_{i=1}^{u} \lim_{n\rightarrow\infty} a_{i}(n) | < \frac{\epsilon}{2} and |L_{0} - \Sigma_{i=1}^{u} \lim_{n\rightarrow\infty} a_{i}(n) | \leq \frac{\epsilon}{2}. By the triangle inequality, then, |L - L_{0}| < \epsilon. Since epsilon was arbitrary, L = L_{0}.
What about the cases where the sides aren't finite?
Last edited: