Line integral convert to polar coordinates

  • #1
7
0

Homework Statement


I need to find the work done by the force field:
$$\vec{F}=(5x-8y\sqrt{x^2+y^2})\vec{i}+(4x+10y\sqrt{x^2+y^2})\vec{j}+z\vec{k}$$
moving a particle from a to b along a path given by:
$$\vec{r}=\frac{1}{2}\cos(t)\vec{i}+\frac{1}{2}\sin(t)\vec{j}+4\arctan(t)\vec{k}$$

The Attempt at a Solution


So I set up my line integral:
$$\vec{F}(\vec{r}(t))=(\frac{5}{2}\cos(t)-2\sqrt{2}\sin(t))\vec{i}+(2\cos(t)+\frac{5\sqrt{2}}{2}\sin(t))\vec{j}+(4\arctan(t))\vec{k}$$
$$\vec{r'}(t)=\left(-\frac{1}{2}\sin(t)\right)\vec{i}+\left(\frac{1}{2}\cos(t)\right)\vec{j}+\left(\frac{4}{t^2+1}\right)\vec{k}$$
$$\int_0^{1}\left(-\frac{5+5\sqrt{2}}{4}\sin(t)\cos(t)+\sqrt{2}\sin^2(t)+\cos^2(t)+\frac{16\arctan(t)}{t^2+1}\right)\; \text{d}t=5.86436$$

I have left a lot of steps out, it gets messy! Could this problem be solved by reducing the integral to polar coordinates?
 

Answers and Replies

  • #2

Homework Statement


I need to find the work done by the force field:
$$\vec{F}=(5x-8y\sqrt{x^2+y^2})\vec{i}+(4x+10y\sqrt{x^2+y^2})\vec{j}+z\vec{k}$$
moving a particle from a to b along a path given by:
$$\vec{r}=\frac{1}{2}\cos(t)\vec{i}+\frac{1}{2}\sin(t)\vec{j}+4\arctan(t)\vec{k}$$

The Attempt at a Solution


So I set up my line integral:
$$\vec{F}(\vec{r}(t))=(\frac{5}{2}\cos(t)-2\sqrt{2}\sin(t))\vec{i}+(2\cos(t)+\frac{5\sqrt{2}}{2}\sin(t))\vec{j}+(4\arctan(t))\vec{k}$$
$$\vec{r'}(t)=\left(-\frac{1}{2}\sin(t)\right)\vec{i}+\left(\frac{1}{2}\cos(t)\right)\vec{j}+\left(\frac{4}{t^2+1}\right)\vec{k}$$
$$\int_0^{1}\left(-\frac{5+5\sqrt{2}}{4}\sin(t)\cos(t)+\sqrt{2}\sin^2(t)+\cos^2(t)+\frac{16\arctan(t)}{t^2+1}\right)\; \text{d}t=5.86436$$

I have left a lot of steps out, it gets messy! Could this problem be solved by reducing the integral to polar coordinates?
What makes you think you didn't use polar coordinates to get your result?
 

Suggested for: Line integral convert to polar coordinates

Replies
24
Views
692
Replies
5
Views
1K
Replies
12
Views
493
Replies
2
Views
441
Replies
8
Views
496
Replies
13
Views
765
Replies
4
Views
409
Replies
4
Views
594
Back
Top