Line integral convert to polar coordinates

  • #1
7
0

Homework Statement


I need to find the work done by the force field:
$$\vec{F}=(5x-8y\sqrt{x^2+y^2})\vec{i}+(4x+10y\sqrt{x^2+y^2})\vec{j}+z\vec{k}$$
moving a particle from a to b along a path given by:
$$\vec{r}=\frac{1}{2}\cos(t)\vec{i}+\frac{1}{2}\sin(t)\vec{j}+4\arctan(t)\vec{k}$$

The Attempt at a Solution


So I set up my line integral:
$$\vec{F}(\vec{r}(t))=(\frac{5}{2}\cos(t)-2\sqrt{2}\sin(t))\vec{i}+(2\cos(t)+\frac{5\sqrt{2}}{2}\sin(t))\vec{j}+(4\arctan(t))\vec{k}$$
$$\vec{r'}(t)=\left(-\frac{1}{2}\sin(t)\right)\vec{i}+\left(\frac{1}{2}\cos(t)\right)\vec{j}+\left(\frac{4}{t^2+1}\right)\vec{k}$$
$$\int_0^{1}\left(-\frac{5+5\sqrt{2}}{4}\sin(t)\cos(t)+\sqrt{2}\sin^2(t)+\cos^2(t)+\frac{16\arctan(t)}{t^2+1}\right)\; \text{d}t=5.86436$$

I have left a lot of steps out, it gets messy! Could this problem be solved by reducing the integral to polar coordinates?
 

Answers and Replies

  • #2
SteamKing
Staff Emeritus
Science Advisor
Homework Helper
12,798
1,670

Homework Statement


I need to find the work done by the force field:
$$\vec{F}=(5x-8y\sqrt{x^2+y^2})\vec{i}+(4x+10y\sqrt{x^2+y^2})\vec{j}+z\vec{k}$$
moving a particle from a to b along a path given by:
$$\vec{r}=\frac{1}{2}\cos(t)\vec{i}+\frac{1}{2}\sin(t)\vec{j}+4\arctan(t)\vec{k}$$

The Attempt at a Solution


So I set up my line integral:
$$\vec{F}(\vec{r}(t))=(\frac{5}{2}\cos(t)-2\sqrt{2}\sin(t))\vec{i}+(2\cos(t)+\frac{5\sqrt{2}}{2}\sin(t))\vec{j}+(4\arctan(t))\vec{k}$$
$$\vec{r'}(t)=\left(-\frac{1}{2}\sin(t)\right)\vec{i}+\left(\frac{1}{2}\cos(t)\right)\vec{j}+\left(\frac{4}{t^2+1}\right)\vec{k}$$
$$\int_0^{1}\left(-\frac{5+5\sqrt{2}}{4}\sin(t)\cos(t)+\sqrt{2}\sin^2(t)+\cos^2(t)+\frac{16\arctan(t)}{t^2+1}\right)\; \text{d}t=5.86436$$

I have left a lot of steps out, it gets messy! Could this problem be solved by reducing the integral to polar coordinates?
What makes you think you didn't use polar coordinates to get your result?
 

Related Threads on Line integral convert to polar coordinates

  • Last Post
Replies
6
Views
4K
Replies
0
Views
7K
Replies
10
Views
6K
Replies
6
Views
4K
Replies
1
Views
4K
Replies
7
Views
9K
  • Last Post
Replies
13
Views
4K
  • Last Post
Replies
3
Views
2K
Replies
3
Views
9K
Top