Line Integral over Vector Field?

taylormade
Messages
4
Reaction score
0
Not exactly a homework problem, a problem from a sample test. I'm boning up for my qualifying exam.

Homework Statement


Consider the vector field:

F = (ax + by)i + (cx + dy)j

where a, b, c, d are constants.

Let C be the circle of radius r centered at the origin and going around the origin one turn in the mathematically positive direction starting from the positive x-axis.

A parameterization for C is x = r cost y = r sint, (z=0), Where 0\leq t \leq 2 \pi

Find the integral \int_{C}F.dR for any values of a, b, c, d (the answer may depend on a, b, c, d)


Homework Equations





The Attempt at a Solution


The rust is killing me. I remember that I need line integrals to solve the problem, but the setup isn't coming out of the fog.
 
Physics news on Phys.org
In terms of your parametrization C, dR is (-r*sin(t)dt,r*cos(t)dt). Do you see why? Now express the vector F in terms of t and take the dot product. You'll wind up with two integrals dt to do. Any clearer?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top