Linear Algebra Linear Algebra: A Modern Introduction by David Poole

AI Thread Summary
David Poole's "Linear Algebra: A Modern Introduction" is a well-regarded textbook that provides a solid foundation in linear algebra concepts. It covers essential topics such as vectors, systems of linear equations, matrices, eigenvalues and eigenvectors, orthogonality, vector spaces, and distance and approximation. The book is noted for its clear explanations and a balanced mix of computational problems and proofs, making it accessible without being overwhelming. While it emphasizes computational aspects, it serves as a strong introductory resource, with suggestions for further study in more advanced texts like Axler, Friedburg, or Hoffman for those already familiar with the subject. The textbook also includes appendices on mathematical notation, methods of proof, and complex numbers, enhancing its utility for learners.

For those who have used this book

  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    3
Messages
19,790
Reaction score
10,746

Table of Contents:
Code:
[LIST]
[*] Vectors
[LIST]
[*] Introduction: The Racetrack Game
[*] The Geometry and Algebra of Vectors
[*] Length and Angle: The Dot Product
[*] Lines and Planes
[*] Code Vectors and Modular Arithmetic
[/LIST]
[*] Systems of Linear Equations
[LIST]
[*] Introduction: Triviality
[*] Introduction to Systems of Linear Equations
[*] Direct Methods for Solving Linear Systems
[*] Spanning Sets and Linear Independence
[*] Applications
[LIST]
[*] Allocation of Resources
[*] Balancing Chemical Equations
[*] Network Analysis
[*] Electrical Networks
[*] Finite Linear Games
[/LIST]
[*] Iterative Methods for Solving Linear Systems
[/LIST]
[*] Matrices
[LIST]
[*] Introduction: Matrices in Action
[*] Matrix Operations
[*] Matrix Algebra
[*] The Inverse of a Matrix
[*] The LU Factorization
[*] Subspaces, Basis, Dimension, and Rank
[*] Introduction to Linear Transformations
[*] Applications
[LIST]
[*] Markov Chains
[*] Population Growth
[*] Graphs and Digraphs
[*] Error-Correcting Codes
[/LIST]
[/LIST]
[*] Eigenvalues and Eigenvectors
[LIST]
[*] Introduction: A Dynamical System on Graphs
[*] Introduction to Eigenvalues and Eigenvectors
[*] Determinants
[*] Eigenvalues and Eigenvectors of [itex]n\times n[/itex] Matrices
[*] Similarity and Diagonalization
[*] Iterative Methods for Computing Eigenvalues
[*] Applications and the Perron-Frobenius Theorem
[LIST]
[*] Markov Chains
[*] Population Growth
[*] The Perron-Frobenius Theorem
[*] Linear Recurrence Relations
[*] Systems of Linear Differential Equations
[*] Discrete Linear Dynamical Systems
[/LIST]
[/LIST]
[*] Orthogonality
[LIST]
[*] Introduction: Shadows on a Wall
[*] Orthogonality in [itex]\mathbb{R}^n[/itex]
[*] Orthogonal Complements and Orthogonal Projections
[*] The Gram-Schmidt Process and the QR Factorization
[*] Orthogonal Diagonalization of Symmetric Matrices
[*] Applications
[LIST]
[*] Dual Cods
[*] Quadratic Forms
[*] Graphic Quadratic Equations
[/LIST]
[/LIST]
[*] Vector Spaces
[LIST]
[*] Introduction: Fibonacci in (Vector) Space
[*] Vector Spaces and Subspaces
[*] Linear Independence, Basis and Dimension
[*] Change of Basis
[*] Linear Transformations
[*] The Kernel and Range of a Linear Transformation
[*] The Matrix of a Linear Transformation
[*] Applications
[LIST]
[*] Homogeneous Linear Differential Equations
[*] Linear Codes
[/LIST]
[/LIST]
[*] Distance and Approximation
[LIST]
[*] Introduction: Taxicab Geometry
[*] Inner Product Spaces
[*] Norms and Distance Functions
[*] Least Square Approximation
[*] The Singular Value Decomposition
[*] Applications
[LIST]
[*] Approximation of Functions
[*] Error-Correcting Codes
[/LIST]
[/LIST]
[*] Appendix: Mathematical Notation and Methods of Proof
[*] Appendix: Mathematical Induction
[*] Appendix: Complex Numbers
[*] Appendix: Polynomials
[*] Answers to Selected Odd-Numbered Exercises
[*] Index
[/LIST]
 
Last edited:
Physics news on Phys.org
It's a very nice textbook. Offers a good introduction with linear algebra. It is rigorous but just enough where it is not overwhelming. It explains the concepts very clearly and the problems range from easy to intermediate level questions. It gives a good mix of computational problems and proofs. Maybe more so on the computational side but that is expected since it is only an introduction. For those who are familiar with linear algebra going on with Axlers, Friedburg, or Hoffman(i like this one) would be a good idea.
 
The book is fascinating. If your education includes a typical math degree curriculum, with Lebesgue integration, functional analysis, etc, it teaches QFT with only a passing acquaintance of ordinary QM you would get at HS. However, I would read Lenny Susskind's book on QM first. Purchased a copy straight away, but it will not arrive until the end of December; however, Scribd has a PDF I am now studying. The first part introduces distribution theory (and other related concepts), which...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...

Similar threads

  • Poll Poll
Replies
3
Views
6K
  • Poll Poll
Replies
1
Views
3K
  • Poll Poll
Replies
1
Views
4K
  • Poll Poll
Replies
1
Views
4K
  • Poll Poll
Replies
3
Views
8K
Replies
2
Views
6K
Replies
2
Views
2K
Replies
1
Views
4K
Replies
16
Views
10K
Back
Top