Linear Algebra - adding subspaces

Click For Summary
In the discussion on adding subspaces, it is clarified that U + U refers to the set of all sums of elements from the subspace U, resulting in U itself since addition is closed in U. The concept of direct sums is also explained, emphasizing that for two subspaces A and B, V is their direct sum if their intersection is only the zero vector and their sum equals V. The confusion around the addition symbol is addressed, distinguishing it from the union of subspaces, which only forms a subspace if one is contained within the other. The formal proof provided confirms that U is both a subset of and equal to U + U. Overall, the addition of subspaces maintains the properties of closure and equality within the subspace.
moonbounce7
Messages
3
Reaction score
0
1. Suppose that U is a subspace of V. What is U+U?


2. Homework Equations :
There's a theorem that states: Suppose that A and B are subspaces of V. Then V is the direct sum of A and B (written as A [plus with a circle around it] B) if and only if: 1) V=A+B (meaning, the two subspaces are technically able to be added), and 2) The intersection of A and B = {0}.



3. I don't understand what the addition symbol really means in this case... I know that addition of two subspaces is NOT the same as the union of two subspaces. The union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other. ...Help!
 
Physics news on Phys.org
The sum of two subspaces A and B is the set of all sums a + b such that a is in A and b is in B. The direct sum of two subspaces A and B as subspaces of V is the set of all vectors in V that can be written uniquely as ka + jb for k,j in R (if R is the field), a in A and b in B. This is the one that is usually denoted as a circle around the plus sign.
 
Thanks for trying to help, I think I've figured it out though:

The definition of addition among subspaces follows this definition:

U+U = {a+b, such that aЄU and bЄU}.

Since U is a subspace, addition is closed in U, so adding two elements in U would simply produce another element in U.

Therefore, U+U = U.

A justification would be a formal proof such that U ⊆ U+U and U+U ⊆ U.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K