Here is the strategy for reduced row echelon form. Follow it carefully
Say you have a 3x3 integer array
[ 2 , 21 , 3 ]
[ 4 , 15 , 18 ]
[ 8 , 3 , 9 ]
Definition: (Row) Pivot = first non-zero digit in the row
Step 1
Pivot = (0,0) = 2
Multiplier = (1, 0) / Pivot = 4/2 = 2
(1,0) = (1, 0) - Multiplier * (0,0)
(1,1) = (1,1) - Multiplier * (0,1)
(1,2) = (1, 2) - Multiplier * (0,2)
Or simply
Row 1 = Row1 - Multiplier * Row 0
[ 2 , 21 , 3 ]
[ 0 , -27 , 12 ]
[ 8 , 3 , 9 ]
Step 2
Pivot = (0,0) = 2
Multiplier = (2, 0) / Pivot = 8/2 = 4
(2,0) = (2, 0) - Multiplier * (0,0)
(2,1) = (2,1) - Multiplier * (0,1)
(2,2) = (2, 2) - Multiplier * (0,2)
Or simply
Row 2 = Row2 - Multiplier * Row 0
[ 2 , 21 , 3 ]
[ 0 , -27 , 12 ]
[ 0 , -81 , -3 ]
Step 3
Pivot = (1,1) = -27
Multiplier = (2, 1) / Pivot = -81/-27 = 3
(2,1) = (2,1) - Multiplier * (1,1)
(2,2) = (2, 2) - Multiplier * (1,2)
Or simply
Row 2 = Row2 - Multiplier * Row 1
[ 2 , 21 , 3 ]
[ 0 , -27 , 12 ]
[ 0 , 0 , -33 ]
Step 4
Pivot = (2,2) = -33
Multiplier = (1, 2) / Pivot = -(12/33)
(1,2) = (1,2) - Multiplier * (2,2)
Or simply
Row 1 = Row1 - Multiplier * Row 2
[ 2 , 21 , 3 ]
[ 0 , -27 , 0 ]
[ 0 , 0 , -33 ]
Step 5
Pivot = (2,2) = -33
Multiplier = (0, 2) / Pivot = 3/-33 = -(1/11)
(0,2) = (0,2) - Multiplier * (2,2)
Or simply
Row 0 = Row0 - Multiplier * Row 2
[ 2 , 21 , 0 ]
[ 0 , -27 , 0 ]
[ 0 , 0 , -33 ]
Step 6
Pivot = (1,1) = -27
Multiplier = (0, 1) / Pivot = 21/-27 = -(7/9)
(0,1) = (0,1) - Multiplier * (1,1)
Or simply
Row 0 = Row0 - Multiplier * Row 1
[ 2 , 0 , 0 ]
[ 0 , -27 , 0 ]
[ 0 , 0 , -33 ]
Step 7
Pivot = (0,0) = 2
Row 0 = Row 0 / Pivot
[ 1 , 0 , 0 ]
[ 0 , -27 , 0 ]
[ 0 , 0 , -33 ]
Step 8
Pivot = (1,1) = -27
Row 1 = Row 1 / Pivot
[ 1 , 0 , 0 ]
[ 0 , 1 , 0 ]
[ 0 , 0 , -33 ]
Step 9
Pivot = (2,2) = -33
Row 2 = Row 2 / Pivot
[ 1 , 0 , 0 ]
[ 0 , 1 , 0 ]
[ 0 , 0 , 1 ]
----------------------------------------
If your interested in finding the Inverse matrix, just augment the one above with the identiy matrix
[ 2 , 21 , 3 | 1 , 0 , 0 ]
[ 4 , 15 , 18 | 0 , 1 , 0 ]
[ 8 , 3 , 9 | 0 , 0 , 1 ]
Then do the same procedure but when doing the multiplier row operations, make sure to do it to the right side of the augmented matrix as well.
Here is the first step with the the augmented matrix:
[ 2 , 21 , 3 | 1 , 0 , 0 ]
[ 0 , -27 ,12 | -2 , 1, 0 ]
[ 8 , 3 , 9 | 0 , 0 , 1 ]