Linear Algebra - Associative property

Karamata
Messages
59
Reaction score
0

Homework Statement


G=\{x\in R|0\leq x<1\} and for some x,y\in G define x*y=\{x+y\}=x+y-\lfloor x+y \rfloor

Homework Equations


The Attempt at a Solution


I want to proof Associative property:
x*(y*z)=(x*y)*z \Leftrightarrow x*(y+z-\lfloor y+z \rfloor)=(x+y-\lfloor x+y \rfloor)*z
\Leftrightarrow x+y+z-\lfloor y+z \rfloor-\lfloor {x+y+z-\lfloor y+z \rfloor}\rfloor=x+y+z-\lfloor x+y \rfloor-\lfloor x+y+z-\lfloor x+y \rfloor\rfloor
\Leftrightarrow\lfloor y+z \rfloor+\lfloor {x+y+z-\lfloor y+z \rfloor}\rfloor=\lfloor x+y \rfloor+\lfloor x+y+z-\lfloor x+y \rfloor\rfloor
What now?
 
Physics news on Phys.org
The nested floor functions can be taken outside of their encapsulating floor functions since they are integers
 
\lfloor x+y+z-\lfloor y+z \rfloor \rfloor=\lfloor x+y+z\rfloor-\lfloor y+z \rfloor
Right? That seems well.

Can we do that if x+y+z<x+y (ok, that isn't true in this task), and if x+y+z\geq 0 and y+z\geq 0


Sorry for bad English.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top