Karamata
- 59
- 0
Homework Statement
G=\{x\in R|0\leq x<1\} and for some x,y\in G define x*y=\{x+y\}=x+y-\lfloor x+y \rfloor
Homework Equations
The Attempt at a Solution
I want to proof Associative property:
x*(y*z)=(x*y)*z \Leftrightarrow x*(y+z-\lfloor y+z \rfloor)=(x+y-\lfloor x+y \rfloor)*z
\Leftrightarrow x+y+z-\lfloor y+z \rfloor-\lfloor {x+y+z-\lfloor y+z \rfloor}\rfloor=x+y+z-\lfloor x+y \rfloor-\lfloor x+y+z-\lfloor x+y \rfloor\rfloor
\Leftrightarrow\lfloor y+z \rfloor+\lfloor {x+y+z-\lfloor y+z \rfloor}\rfloor=\lfloor x+y \rfloor+\lfloor x+y+z-\lfloor x+y \rfloor\rfloor
What now?