MHB Linear Algebra: Kernel & Range of Linear Transformation

matqkks
Messages
280
Reaction score
5
Why are we interested in looking at the kernel and range (image) of a linear transformation on a linear algebra course?
 
Physics news on Phys.org
They can be useful. Suppose you have a linear map f: V \to W. If you want to know if this linear map is injective (i.e one-to-one map) then you can take a look at the kernel: $$\ker( f)=\{0\} \Leftrightarrow \ f \ \mbox{is injective}$$

There's also the following result.
$$V/\mbox{ker}( f) \cong \mbox{Im}( f)$$
which can be very useful because it's easier to work with the image in stead of the quotientspace $V/\mbox{ker}( f)$

These are offcourse a lot of other results but these two are the first I could remember immediately.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top