gruba
- 203
- 1
Homework Statement
Let U is the set of all commuting matrices with matrix A= \begin{bmatrix}<br /> 2 & 0 & 1 \\<br /> 0 & 1 & 1 \\<br /> 3 & 0 & 4 \\<br /> \end{bmatrix}. Prove that U is the subspace of \mathbb{M_{3\times 3}} (space of matrices 3\times 3). Check if it contains span\{I,A,A^2,...\}. Find the dimension and a basis for U and span\{I,A,A^2,...\}.
Homework Equations
-Commuting matrices
-Subspaces
-Vector space span
Basis and dimension
The Attempt at a Solution
U can be defined as U=\{B\in\mathbb{M_{3\times 3}}: AB=BA\}.
Letting B=\begin{bmatrix}<br /> a & b & c \\<br /> d & e & f \\<br /> g & h & i \\<br /> \end{bmatrix} and solving the equation AB=BA gives B=\begin{bmatrix}<br /> i-\frac{2}{3}g & 0 & \frac{1}{3}g \\<br /> g-3f & i-3g & f \\<br /> g & 0 & i \\<br /> \end{bmatrix}.
U is a subspace of \mathbb{M_{3\times3}} if \forall u_1,u_2\in U\Rightarrow u_1+u_2\in U,\forall t\in\mathbb{R}\Rightarrow tu_1\in U which is correct.
It is easy to check that if C\in span\{I,A,A^2,...\}\Rightarrow C\in U:
Linear combination for C is
C=c_0I+c_1A+c_2A^2+...\Rightarrow CA=AC\Rightarrow C\in U
U has the dimension 3 and a basis are column vectors of identity matrix 3\times 3.
How to find the dimension and a basis for span\{I,A,A^2,...\}?