Linear combinations euclidean algoritm extended

sg001
Messages
134
Reaction score
0

Homework Statement



I have questions along the line of

Use the Euclidean Algorithm to find d= gcd(a,b) and x, y \in Z with d= ax +by



Homework Equations





The Attempt at a Solution



Ok so I use the euclidean algorithm as I know it on say gcd (83,36), by minusing of the the lowest number and repeating until i get the last non zero remainder ie, the gcd but I am completely lost on how to find the form ax +by, I know there must be some technique other than guessing and trial and error...
anyone care to let me in?
 
Physics news on Phys.org
Yes, 36 divides into 83 twice with remainder 11: (I) 11= 83- 2(36).

Then 11 divides into 36 three times with remainder 3: (II) 3= 36- 3(11).

3 divides into 11 three times with remainder 2: (III) 2= 11- 3(3).

Finally, 2 divides into 3 once with remainder 1: (IV) 1= 3- 2 which tells us that the least common denominator is 1. (36 and 83 are "relatively prime".)

Now replace the "2" in equation (IV) with "11- 3(3)" from (III) to get
1= 3- (11- 3(3))= 3- 11+ 3(3)= 4(3)- 11.

Then replace the "(3)" in that equation by "36- 3(11)" from (II) to get
1= 4(36- 3(11))- 11= 4(36)- 12(11)- 11= 4(36)- 13(11).

Finally, replace the "(11)" in that equation by "83- 2(36)" from (I) to get
1= 4(36)- 11(83- 2(36))= 4(36)- 11(83)+ 22(36)= 26(36)- 11(83).

That is "d= ax+ by" with d=1, a= -11, b= 26.
 
HallsofIvy said:
Yes, 36 divides into 83 twice with remainder 11: (I) 11= 83- 2(36).

Then 11 divides into 36 three times with remainder 3: (II) 3= 36- 3(11).

3 divides into 11 three times with remainder 2: (III) 2= 11- 3(3).

Finally, 2 divides into 3 once with remainder 1: (IV) 1= 3- 2 which tells us that the least common denominator is 1. (36 and 83 are "relatively prime".)

Now replace the "2" in equation (IV) with "11- 3(3)" from (III) to get
1= 3- (11- 3(3))= 3- 11+ 3(3)= 4(3)- 11.

Then replace the "(3)" in that equation by "36- 3(11)" from (II) to get
1= 4(36- 3(11))- 11= 4(36)- 12(11)- 11= 4(36)- 13(11).

Finally, replace the "(11)" in that equation by "83- 2(36)" from (I) to get
1= 4(36)- 11(83- 2(36))= 4(36)- 11(83)+ 22(36)= 26(36)- 11(83).

That is "d= ax+ by" with d=1, a= -11, b= 26.

Thanks that makes sense although I was hoping I could have acheived the result by ie gcd(83,36) =

83-36 =47 -36 = 36 -11 = 25 -11 = 14-11 = 11-3 = 8-3 = 5-3 = 3-2 = 2-1 = 1 !

and then I was hoping the coefficients would lie in there somewhere...

but I guess there's only some ways it will work

by the way how did you get the 13 in the fifth paragraph on the last expression?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
1
Views
1K
Replies
20
Views
3K
Replies
11
Views
2K
Replies
5
Views
4K
Replies
2
Views
2K
Back
Top