Linear combinations euclidean algoritm extended

Click For Summary
The discussion revolves around using the Euclidean Algorithm to find the greatest common divisor (gcd) of two numbers, specifically 83 and 36, and expressing it in the form d = ax + by. The user successfully applies the algorithm to find that gcd(83, 36) = 1, demonstrating the steps taken to reach this conclusion. They express the relationship in the required form, identifying coefficients a = -11 and b = 26. There is a query regarding the derivation of the coefficient 13 in the final expression, indicating a desire for clarity on the calculation process. The conversation highlights the methodical approach to solving linear combinations using the Euclidean Algorithm.
sg001
Messages
134
Reaction score
0

Homework Statement



I have questions along the line of

Use the Euclidean Algorithm to find d= gcd(a,b) and x, y \in Z with d= ax +by



Homework Equations





The Attempt at a Solution



Ok so I use the euclidean algorithm as I know it on say gcd (83,36), by minusing of the the lowest number and repeating until i get the last non zero remainder ie, the gcd but I am completely lost on how to find the form ax +by, I know there must be some technique other than guessing and trial and error...
anyone care to let me in?
 
Physics news on Phys.org
Yes, 36 divides into 83 twice with remainder 11: (I) 11= 83- 2(36).

Then 11 divides into 36 three times with remainder 3: (II) 3= 36- 3(11).

3 divides into 11 three times with remainder 2: (III) 2= 11- 3(3).

Finally, 2 divides into 3 once with remainder 1: (IV) 1= 3- 2 which tells us that the least common denominator is 1. (36 and 83 are "relatively prime".)

Now replace the "2" in equation (IV) with "11- 3(3)" from (III) to get
1= 3- (11- 3(3))= 3- 11+ 3(3)= 4(3)- 11.

Then replace the "(3)" in that equation by "36- 3(11)" from (II) to get
1= 4(36- 3(11))- 11= 4(36)- 12(11)- 11= 4(36)- 13(11).

Finally, replace the "(11)" in that equation by "83- 2(36)" from (I) to get
1= 4(36)- 11(83- 2(36))= 4(36)- 11(83)+ 22(36)= 26(36)- 11(83).

That is "d= ax+ by" with d=1, a= -11, b= 26.
 
HallsofIvy said:
Yes, 36 divides into 83 twice with remainder 11: (I) 11= 83- 2(36).

Then 11 divides into 36 three times with remainder 3: (II) 3= 36- 3(11).

3 divides into 11 three times with remainder 2: (III) 2= 11- 3(3).

Finally, 2 divides into 3 once with remainder 1: (IV) 1= 3- 2 which tells us that the least common denominator is 1. (36 and 83 are "relatively prime".)

Now replace the "2" in equation (IV) with "11- 3(3)" from (III) to get
1= 3- (11- 3(3))= 3- 11+ 3(3)= 4(3)- 11.

Then replace the "(3)" in that equation by "36- 3(11)" from (II) to get
1= 4(36- 3(11))- 11= 4(36)- 12(11)- 11= 4(36)- 13(11).

Finally, replace the "(11)" in that equation by "83- 2(36)" from (I) to get
1= 4(36)- 11(83- 2(36))= 4(36)- 11(83)+ 22(36)= 26(36)- 11(83).

That is "d= ax+ by" with d=1, a= -11, b= 26.

Thanks that makes sense although I was hoping I could have acheived the result by ie gcd(83,36) =

83-36 =47 -36 = 36 -11 = 25 -11 = 14-11 = 11-3 = 8-3 = 5-3 = 3-2 = 2-1 = 1 !

and then I was hoping the coefficients would lie in there somewhere...

but I guess there's only some ways it will work

by the way how did you get the 13 in the fifth paragraph on the last expression?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K