Linear dependence of square matrices

snu
Messages
1
Reaction score
0
I am studying the subject of linear dependence right now and had a question on this topic. Is it possible to construct a square matrix A such that the columns of A are linearly dependent, but the columns of the transpose of A are linearly independent? My intuition tells me no, but I'm not sure how I would prove this to be the case in general. I've tried constructing several square matrices that are linearly dependent and taken the transpose and found that to be linearly dependent as well, but I'm not sure if this always holds.
 
Physics news on Phys.org
All matrices have the property that the determinant of the transpose is equal to the determinant of the original matrix.

From this I would gather that you can't have the property you have described above.

Look at this site:

http://mathworld.wolfram.com/Determinant.html
 
It's actually stronger than that: the column rank of any matrix (=dimension of space spanned by its columns) equals the row rank. In particular, for square matrices, if the columns are linearly dependent (column rank is smaller than matrix dimension), so are the rows.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top