I Linear dependency of Vectors above R and C and the det

  • I
  • Thread starter Thread starter Dank2
  • Start date Start date
  • Tags Tags
    Linear Vectors
Dank2
Messages
213
Reaction score
4
consider the two vectors v1 = (3i, 2), v2 = (-3, 2i). in C^2

Above C we get, v1 * i = v2, therefore they are dependent.

Now above R, we can't see that they are dependent.

Why if i take the determinant of those vectors i get get 0 |v1 v2| = 2x2 matrix = 0 ( which means two column vectors are independent). Does the determinant works only above C in this case because above R they are independent and yet we get same result of the determinant?
 
Physics news on Phys.org
those vectors have 2 entries over C but 4 entries over R. Then the (real) matrix of the two vectors is 2 x 4, and it will not have all 2x2 sub determinants equal to zero. so the determinant method still works over R, but you have to express the vectors in terms of a real basis, which takes 4 basis vectors, hence 4 real entries for your vectors.
 
Your vectors are part of ##ℂ^2## and linearly dependant over ##ℂ## as you correctly said.

What you are next doing is to confuse different concepts.
If you regard the vectors over ##ℝ##, then ##i## is no longer a scalar and ##i^2 = -1## cannot be calculated. Your determinant is therefore ##6i^2 + 6## which is different from ##0 \in ℝ##. ##i## plays the same role as a variable would do,
i.e. ## v_1, v_2 ∈ ℝ^2[x] ≅ ℝ^2[\text{i}] ##.
 
  • Like
Likes Dank2
mathwonk said:
those vectors have 2 entries over C but 4 entries over R. Then the (real) matrix of the two vectors is 2 x 4, and it will not have all 2x2 sub determinants equal to zero. so the determinant method still works over R, but you have to express the vectors in terms of a real basis, which takes 4 basis vectors, hence 4 real entries for your vectors.
but 2x4 matrix over R means the columns are are linearly dependent. how do i write the vectors are above as 4 vector basis in R? and how do i see they are linearly independent above R in that matrix?
 
maybe i should have said 4x2. then the columns are vectors of length 4. a real basis of C^2 is e.g., (1,0), (i,0), (0,1), (0,i). in that basis (3i,2) has real coordinate (row, since i can't write columns here) vector (0, 3, 2, 0), and (-3,2i) has coordinate vector (-3, 0, 0, 2). then the first 2x2 determinant equals 9 or -9 depending on what order you write the vectors. since there is a non zero 2x2 determinant the vectors are independent over R.
 
  • Like
Likes Dank2
Complex multiplication allows one vector to be rotated to another vector. So they will be linearly dependent. Multiplication of vectors in R2 by real numbers can not rotate a vector. So two vectors in R2 can be linearly dependent only if they are parallel.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top