Gregg
- 452
- 0
linear independence
given that a,b and c are linearly independant vectors determine if the following vectors are linearly independant.
a) a,0
b) a+b, b+c, c+a
c) a+2b+c, a-b-c, 5a+b-c
I'm not sure how to tackle the question in this form.
Edit:
a) a=0a Dependant
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 1 \\<br /> 1 & 1 & 0 \\<br /> 0 & 1 & 1<br /> \end{array}<br /> \right)\right]=2
Independant
(c)
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> 1 & 1 & 5 \\<br /> 2 & -1 & 1 \\<br /> 1 & -1 & -1<br /> \end{array}<br /> \right)\right]=0 Dependant
Is it ok to use those vector co-efficients in a matrix like that?
Homework Statement
given that a,b and c are linearly independant vectors determine if the following vectors are linearly independant.
a) a,0
b) a+b, b+c, c+a
c) a+2b+c, a-b-c, 5a+b-c
The Attempt at a Solution
I'm not sure how to tackle the question in this form.
Edit:
a) a=0a Dependant
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 1 \\<br /> 1 & 1 & 0 \\<br /> 0 & 1 & 1<br /> \end{array}<br /> \right)\right]=2
Independant
(c)
<br /> \text{Det}\left[\left(<br /> \begin{array}{ccc}<br /> 1 & 1 & 5 \\<br /> 2 & -1 & 1 \\<br /> 1 & -1 & -1<br /> \end{array}<br /> \right)\right]=0 Dependant
Is it ok to use those vector co-efficients in a matrix like that?
Last edited: