latentcorpse
- 1,411
- 0
Let \mathbb{RP}^n= ( \mathbb{R}^{n+1} - \{ 0 \} ) / \sim where x \sim y if y=\lambda x, \lambda \neq 0 \in \mathbb{R} adn the equivalence class of x is denoted [x].
what is the necessary and sufficient condition on the linear map f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{m+1} for the formula [f][x]=[f(x)] to define a map
[f] : \mathbb{RP}^n \rightarrow \mathbb{RP}^m ; [x] \mapsto [f(x)]
not a scooby.
what is the necessary and sufficient condition on the linear map f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{m+1} for the formula [f][x]=[f(x)] to define a map
[f] : \mathbb{RP}^n \rightarrow \mathbb{RP}^m ; [x] \mapsto [f(x)]
not a scooby.