says said:
My textbook is absolutely horrible...
I don't understand what the question is asking, it's mapping a vector from R3 to R2. I know with linear transformations that matrix multiplication w/ vectors is always a linear transformation. I'm just a bit confused because the equation I've been working with is T(x) = A(x), where x is a vector and A is a matrix, but this question has the matrix as A(l)...
edit: and I've looked at other online sources, but I can't seem to find anything / anyone that can explain questions like this in very very simple terms. From there I can build my understanding and then replace the words / meaning I have with a more mathematically formal definition.
Not sure where your difficulty starts, so I'll start at the beginning.
A vector in a vector space is an abstract concept. A representation of it as a list of scalar values is only meaningful in the context of a chosen basis, an independent set of vectors within the space. Unfortunately, as far as I am aware, there is no separate term for such a representation, it is also called a vector. So I adopted lowercase for the abstract form and uppercase for a representation. Thus my V and V' represent the same vector v, but using the two different bases. Thus, if the bases are the (abstract) vector lists (e
1,..,e
n) and (e'
1,..,e'
n) then we have the abstract vector equation ##v=\Sigma V_ie_i=\Sigma V'_ie'_i##.
Likewise, a linear transformation is an abstract function from one vector space to another (or to itself). Given a basis for each vector space, it can be represented as a matrix.
You have a transformation, l (lowercase L), represented by the matrix A given the basis (e
1,..,e
n) in the domain space and some basis in the range space. Since that comes out looking like I in the font I'm using, I'll call it a instead.
(You wrote something like T(x)=Ax, but that is not right strictly. Using my case-sensitive notation, it becomes a(x)=AX, but that is still wrong because the left hand side is an abstract vector and the right hand side is not.)
Now, let's leave the range space basis fixed for the moment.
You have a matrix A, and AX produces the representation of a(x), where X is the representation of x in the original basis. Now we are given, instead, X' as the representation of x in a new basis. In order to use the matrix A, we must first discover the representation of x in the old basis. So you need to figure out how to convert an X' to an X. I.e. you wish to map one basis to the other. This will be a matter of finding a matrix to do it. The tricky part is getting the mapping the right way round!
Edit: I see the font came out ok after all. In what I type, l and I look the same, but once posted they're different.