Liner differentials of order n, Kernel

bakin
Messages
55
Reaction score
0

Homework Statement



Verify that the given function is in the kernel of L.

y(x)=x-2
L = x2D2 + 2xD - 2

Homework Equations


The Attempt at a Solution



I took the first and 2nd derivative of y(x), and got
y'(x)= -2x-3
y''(x)= 6x-4

Then plugged it into L (and a little simplifying) and got

L(y) = 6x-2+2x-1-2

I think I'm supposed to plug it in, and verify that it's equal to zero, but it's not coming out right.

Any obvious mistakes? Or wrong direction all together?
 
Physics news on Phys.org
How does 2xDy become 2x^(-1)?? And the -2 isn't just a -2. L is operating on y. What should it be?
 
Bah, forgot about the -2 part. It's actually -2y, correct? So the last term would be -2y, or -2x-2.

And as I was typing out how I came up with 2xD, I realized I substituted just y into D, and not y' :blushing:

With the correct substitutions, I came up with:

L = x2*6x-2 + 2x*-2x-3 - 2x-2

= 6x-2 - 4x-2 - 2x-2

= 0


:-p Once again, thanks Dick.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top