Little bit confuse on vector space

zhfs
Messages
10
Reaction score
0
how to proof if the solution set of a second order diffential equation af''+bf'+cf=0 is a real vector space w.r.t. the usual opeations?
 
Physics news on Phys.org
Since the set of differentiable functions is itself a vector space the solutions would form a subspace. It thus is sufficient to show that the set is closed under the operations of addition and scalar multiplication.

Given any subset of a vector space you already have all the properties of associativity, distribution under scalar multiplication and vector addition, etc. The only issue is closure under the basic operations.
 
james,

first of all thank you very much for your explaining, that helps me a lot.

but still i have some question to ask you, can you please help me out as well?

i just got no idea what is the set of the soluiton of those d.e.
do i need to use y=a^ex to solve them or i need to reduce them into first order matrix system?

but if i reduce into first order matrix system, how can i proof it is closeure under addition and scalar multiplication?

many thanks!

regards,
tony
 
Either method works for finding solutions but solving the system directly is the most straightforward (presuming a,b, and c are constants). The way to look at this equation is in terms of the derivative as an operator D:

[aD^2 +bD + c1] f = 0
The exponential function f=e^(rx) is an "eigen-vector" of the D operator with eigen-value r. The set of all such function forms an "eigen-basis" so any solution must be a linear combination of exponential functions and you can find the r's algebraically.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top