Transforming Log & Exponential Equations

  • Thread starter Thread starter textbooks
  • Start date Start date
  • Tags Tags
    Exponential Log
textbooks
Messages
14
Reaction score
0
Write the following log equations as exponential equations and vice-versa.
1.) ln 0.5 = - 0.6931

Differentiate with respect to x.
2.) y = e^x(sin x + cos x)
 
Physics news on Phys.org
You need to post your attempt before we can help you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top