Dilon
- 3
- 0
(I hope this is not a double posting) I want to solve this system of equations, containing logarithmic terms:
##7\ln(a/b)+A = 7\ln(d/e)+D = 7\ln(g/h)+G##
##7\ln(a/c)+B = 7\ln(d/f)+E = 7\ln(g/i)+H##
##7\ln(b/c)+C = 7\ln(e/f)+F = 7\ln(h/i)+I##
##a\phi_1+d\phi_2+g\phi_3=X##
##b\phi_1+e\phi_2+h\phi_3=Y##
##c\phi_1+f\phi_2+i\phi_3=Z##
a+b+c=1
d+e+f=1
g+h+i=1
where the uppercase and \phi coefficients are known and a,b,c...i are the unknown coefficients.
The following are also true, but might not be important since the values are known:
\phi_1+\phi_2+\phi_3=1
X+Y+Z=1
My strategy so far:
I introduce the unknowns n_1,n_2, n_3 to link the equations as:
##7\ln(a)-7\ln(b)-n_1 = -A##
##7\ln(a)-7\ln(c)-n_2 = -B##
##7\ln(b)-7\ln(c)-n_3 = -C##
##7\ln(d)-7\ln(e)-n_1=-D##
##7\ln(d)-7\ln(f)-n_2=-E##
##7\ln(e)-7\ln(f)-n_3=-F##
##7\ln(g)-7\ln(h)-n_1=-G##
##7\ln(g)-7\ln(i)-n_2=-H##
##7\ln(h)-7\ln(i)-n_3=-I##
The corresponding system of equations maybe looks like this:
<br /> \begin{bmatrix}<br /> 7L & -7L & & & & & & & & -1 & & \\<br /> 7L & & -7L & & & & & & & & -1 & \\<br /> & 7L & -7L & & & & & & & & & -1\\<br /> & & & 7L & -7L & & & & & -1 & & \\<br /> & & & 7L & & -7L & & & & & -1 & \\<br /> & & & & 7L & -7L & & & & & & -1\\<br /> & & & & & & 7L & -7L & & -1 & & \\<br /> & & & & & & 7L & & -7L & & -1 & \\<br /> & & & & & & & 7L & -7L & & & -1\\<br /> \phi_1 & & & \phi_2 & & & \phi_3 & & & & & \\<br /> & \phi_1 & & & \phi_2 & & & \phi_3 & & & & \\<br /> & & \phi_1 & & & \phi_2 & & & \phi_3 & & & \\<br /> 1 & 1 & 1 & & & & & & & & & \\<br /> & & & 1 & 1 & 1 & & & & & & \\<br /> & & & & & & 1 & 1 & 1 & & & \\<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> a\\<br /> b\\<br /> c\\<br /> d\\<br /> e\\<br /> f\\<br /> g\\<br /> h\\<br /> i\\<br /> n_1\\<br /> n_2\\<br /> n_3<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> -A\\<br /> -B\\<br /> -C\\<br /> -D\\<br /> -E\\<br /> -F\\<br /> -G\\<br /> -H\\<br /> -I\\<br /> X\\<br /> Y\\<br /> Z\\<br /> 1\\<br /> 1\\<br /> 1<br /> \end{bmatrix}<br />
where the "L" terms indicate that there is actually a natural log of the variable.
My main problem is: What do I do with the logarithmic terms (the 7L terms indicate 7*ln(unknown))? I want something that can use computer solvers so I need to build a system kind of like I've done, but I'm not sure how to do it even if I am on the right track. Do I need to decompose the system into a logarithmic part and a linear part first? or what?
##7\ln(a/b)+A = 7\ln(d/e)+D = 7\ln(g/h)+G##
##7\ln(a/c)+B = 7\ln(d/f)+E = 7\ln(g/i)+H##
##7\ln(b/c)+C = 7\ln(e/f)+F = 7\ln(h/i)+I##
##a\phi_1+d\phi_2+g\phi_3=X##
##b\phi_1+e\phi_2+h\phi_3=Y##
##c\phi_1+f\phi_2+i\phi_3=Z##
a+b+c=1
d+e+f=1
g+h+i=1
where the uppercase and \phi coefficients are known and a,b,c...i are the unknown coefficients.
The following are also true, but might not be important since the values are known:
\phi_1+\phi_2+\phi_3=1
X+Y+Z=1
My strategy so far:
I introduce the unknowns n_1,n_2, n_3 to link the equations as:
##7\ln(a)-7\ln(b)-n_1 = -A##
##7\ln(a)-7\ln(c)-n_2 = -B##
##7\ln(b)-7\ln(c)-n_3 = -C##
##7\ln(d)-7\ln(e)-n_1=-D##
##7\ln(d)-7\ln(f)-n_2=-E##
##7\ln(e)-7\ln(f)-n_3=-F##
##7\ln(g)-7\ln(h)-n_1=-G##
##7\ln(g)-7\ln(i)-n_2=-H##
##7\ln(h)-7\ln(i)-n_3=-I##
The corresponding system of equations maybe looks like this:
<br /> \begin{bmatrix}<br /> 7L & -7L & & & & & & & & -1 & & \\<br /> 7L & & -7L & & & & & & & & -1 & \\<br /> & 7L & -7L & & & & & & & & & -1\\<br /> & & & 7L & -7L & & & & & -1 & & \\<br /> & & & 7L & & -7L & & & & & -1 & \\<br /> & & & & 7L & -7L & & & & & & -1\\<br /> & & & & & & 7L & -7L & & -1 & & \\<br /> & & & & & & 7L & & -7L & & -1 & \\<br /> & & & & & & & 7L & -7L & & & -1\\<br /> \phi_1 & & & \phi_2 & & & \phi_3 & & & & & \\<br /> & \phi_1 & & & \phi_2 & & & \phi_3 & & & & \\<br /> & & \phi_1 & & & \phi_2 & & & \phi_3 & & & \\<br /> 1 & 1 & 1 & & & & & & & & & \\<br /> & & & 1 & 1 & 1 & & & & & & \\<br /> & & & & & & 1 & 1 & 1 & & & \\<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> a\\<br /> b\\<br /> c\\<br /> d\\<br /> e\\<br /> f\\<br /> g\\<br /> h\\<br /> i\\<br /> n_1\\<br /> n_2\\<br /> n_3<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> -A\\<br /> -B\\<br /> -C\\<br /> -D\\<br /> -E\\<br /> -F\\<br /> -G\\<br /> -H\\<br /> -I\\<br /> X\\<br /> Y\\<br /> Z\\<br /> 1\\<br /> 1\\<br /> 1<br /> \end{bmatrix}<br />
where the "L" terms indicate that there is actually a natural log of the variable.
My main problem is: What do I do with the logarithmic terms (the 7L terms indicate 7*ln(unknown))? I want something that can use computer solvers so I need to build a system kind of like I've done, but I'm not sure how to do it even if I am on the right track. Do I need to decompose the system into a logarithmic part and a linear part first? or what?
Last edited: