Studiot said:
The forces of an earthquake spread out from the source as two waves, one horizontal (P) wave and one vertical (S) wave.
These waves apply disturbing forces and movements to the building foundation points as the wave passes that particular point.
So if the building is a frame mounted on independent foundation pads or blocks the disturbance will occur at different times as the wave passes the individual pads.
this will introduce additional loading into the frame. You asked about torsion well torsion is bad because it can lead to very high stresses in directions the frame elements were not designed to be loaded and are thefore particularly weak.
Look at the sketch.
1) Is what happens when the wave arrives sqare-on ie parallel to the building grid.
As the wave passes AB at the front it lifts and drops the front pads and columns together so there is no side to dise twisting and no torsion.
So only additional bending forces aligned in the ordinary directions of the beams is introduced.
2) However there is only one direction paralle to the grid and many oblique to it so the wave is much more likely to arrive obliquely.
Immediately you can see that A is lifted before B (and CD_ so applies a twist to the frame as well as extra bending.
this is the dreaded torsion situation.
3) Shows the effect of the horizontal wave which moves the pads sideways. this applies a huge leverage on the joint at the top of the column.
It should be noted that the S and P waves travel at different speeds so arrive at different times unless the building is very close the the source.
Hi Studiot,
I've been thinking something for half a day and needs your comment.
Please see the file attached picture. I'm deciding whether to add a column in the middle (marked in red). The architect wanted me to decide.. and I didn't have access to his structural engineer and he can't discuss with me anything structural because he said his specialty was architecture and not familiar with seismic loading or torsions.
Last I talked to him early today I wanted him to add the column at middle. He said it is ok. But then remember in the torsion article any unevenness in structural can introduce twist. Imagine "B" (in the picture) has column at middle while C doesn't. Imagine a seismic wave passing from left to right. This would make the C move differently from B and introduce torsions?
Also something perplexes me. The beam from top to bottom middle are not girder because they are same level as the horizonal beams.. meaning imbedded into each other. Supposed there was no column in the middle of "B". Would the load be distributed to the horizontal and vertical beams (in the picture)? Or would the horizonal beams be the main support and the vertical beam just to holds up the floor slabs? What is usually the case?
Note in the construction project. No precast slabs would be used. They would all be poured concrete and rebars.
So should I add the column in the middle of "B" or not? On one hand, I'm on tight budget and the architect said the "B" side beams would be smaller since they would be 6 metesr apart... and it would also support the 12 meter RC beams at "C" making cross beams. Would this make the loading at "C" distributed to the vertical and horizonal beams?
Actually one month ago. He told me it's nicer to have no columns in the middle. But now said it is ok because I'm on tight budget.
Now I'm quite undecided. I guess seismic considerations would be my primary concern in whether to put the middle column or not.. but then.. if "B" and "C" has no columns at middle... and "A" and "D" have them.. it would still introduce unbalance seismic loading for waves that come from left to right?
Lastly. The connections would be standard connections, the loading is simply one floor above or simply 2-storey with metal sheet in the 2nd floor roof.
What do you think? Column or no column at the middle of "B", that is the question?
Thanks.. this inquiry is my last question in this thread, don't worry :)