- 6,735
- 2,432
Hello, I am trying to prove eq 2.13 in srednicki:
\delta \omega _{\mu\nu}U(\Lambda)^{-1}M^{\mu\nu}U(\Lambda) = \delta \omega _{\mu\nu}\Lambda^\mu{}_{\rho}\Lambda^\nu{}_{\sigma}M^{\rho\sigma}
where we have expanded the following and comparing the linear term:
U(\Lambda)^{-1}U(\Lambda)^{*}U(\Lambda) = U(\Lambda^{-1}\Lambda ^{*}\Lambda)
and
\Lambda^{*} = 1 +\omega
(omega is of course antisymmetric)
and
U(1+ \delta \omega ) = I + \dfrac{i}{2}\delta \omega _{\mu\nu}M^{\mu\nu}
Now I get something like:
\delta \omega _{\mu\nu}U(\Lambda)^{-1}M^{\mu\nu}U(\Lambda) = U(1+\Lambda^{-1}\delta \omega\Lambda )
by just straightforward computation of
U(\Lambda^{-1}\Lambda ^{*}\Lambda)
and now I am stuck badly :-(
\delta \omega _{\mu\nu}U(\Lambda)^{-1}M^{\mu\nu}U(\Lambda) = \delta \omega _{\mu\nu}\Lambda^\mu{}_{\rho}\Lambda^\nu{}_{\sigma}M^{\rho\sigma}
where we have expanded the following and comparing the linear term:
U(\Lambda)^{-1}U(\Lambda)^{*}U(\Lambda) = U(\Lambda^{-1}\Lambda ^{*}\Lambda)
and
\Lambda^{*} = 1 +\omega
(omega is of course antisymmetric)
and
U(1+ \delta \omega ) = I + \dfrac{i}{2}\delta \omega _{\mu\nu}M^{\mu\nu}
Now I get something like:
\delta \omega _{\mu\nu}U(\Lambda)^{-1}M^{\mu\nu}U(\Lambda) = U(1+\Lambda^{-1}\delta \omega\Lambda )
by just straightforward computation of
U(\Lambda^{-1}\Lambda ^{*}\Lambda)
and now I am stuck badly :-(