Lorentz Transformation: R_2=R_1^{-1}?

facenian
Messages
433
Reaction score
25
Let L_w be a Lorentz transformation between to systems that coincide at t=0(paralell axes assumed) and with relative velocity w along x_1. If L_u is the Lorentz transformation when the relative velocity u is in any direcction then we have that L_u=R_2 L_w R_1 where R_2 and R_1 are sapce rotations, R_1 is such that the direction of u and x_1 are the same.
My question is: is it correct that under this circuntances R_2=R_1^{-1}?
 
Physics news on Phys.org
I think the answer is yes. It seems straightforward to verify that it holds for the case where u lies along x_2, i.e., the case where the angle theta between the w and u vectors is pi/2. Also, if it holds for rotations by theta in the 1-2 plane, then it also holds for 2theta. The combination of these two facts makes me think that it holds for any rotation in the 1-2 plane, and since the choice of the 1-2 plane is arbitrary, I think it has to hold for any rotation.

[When I previewed the post above, I saw some of the math rendered incorrectly. The first reference to theta is rendered by some other, unrelated math, (1-epsilon)c. I remember that this is a known bug in the software used by PF, but I don't remember if there is any way to fix it.]

[Later edit: it now seems to be rendered correctly.]

[Gah, now it's rendering incorrectly again, after I made another edit. I'll just remove all the math.]
 
yes there seems to problems when you write in latex that's why I don't use it anymore. Thank you for your answer
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top