Low pressure, high velocity flow vs static pressure

AI Thread Summary
The discussion centers on the feasibility of releasing a compressible flow at 0.99 barA and 300 m/s into a 1 barA environment. It highlights that while the static pressure of the flow may be lower than the release pressure, the dynamic pressure significantly contributes to the total pressure, allowing for successful release. The conversation raises questions about the measurement of pressures and the conditions necessary for such a scenario, including the potential need for a divergent nozzle. Participants debate the establishment of lower pressure upstream and the implications of using a De Laval nozzle for achieving high velocity flow. Overall, the consensus suggests that if the total pressure exceeds the release pressure, the flow can be released effectively.
T C
Messages
353
Reaction score
10
TL;DR Summary
I want to discuss an imaginary scenario here where we have a compressible flow flowing through a tube at 0.99 barA pressure and at 300 m/s velocity and that flow is released into 1 barA pressure. Is it possible or not.
1648790880608.png
In this scenario, we have a compressible flow at 0.99 barA pressure and flowing at 300 m/s velocity and is released into 1 barA pressure. Point is, whether the flow can be released at 1 barA or not at the release pressure is higher than the pressure of the compressible fluid inside the tube. And here is my thought in this regards. The static pressure of the flow may be lower than the release pressure, but it has another pressure and that's the dynamic pressure. At 300 m/s velocity, the dynamic pressure is around 0.7 barA and when that's added to the existing static pressure of the compressible fluid, the total pressure far exceeds the release pressure and the flow can be easily released. For the sake of simplicity, it has been assumed that the tube is frictionless and the static fluid at 1 barA pressure, where this flow is released, is the same and density difference is negligible.
 
Engineering news on Phys.org
How are you measuring each of those pressures?
 
Is this supposed to be a steady state flow? How was the flow at the lower pressure established on the upstream side?
 
I don't see how your situation can exist unless there is a divergent nozzle at the tube exit.
 
  • Like
Likes russ_watters
Lnewqban said:
How are you measuring each of those pressures?
Static pressures are chosen and dynamic velocity calculators available on net. Let's consider the both the fluids at standard temperature. The density can be calculated easily and just put those values into the calculator and you can get the results.
Chestermiller said:
Is this supposed to be a steady state flow? How was the flow at the lower pressure established on the upstream side?
Can't understand what you want to mean.
Dullard said:
I don't see how your situation can exist unless there is a divergent nozzle at the tube exit.
Why a divergent section would be necessary?
 
In case of De Laval nozzle, the release pressure (mentioned as ambient pressure in the page) can be 2-3 times higher than the pressure at the exit of the nozzle. If that's true, that simply means a high velocity flow of lower pressure can easily enter at higher pressure if the gross i.e. total sum of static and dynamic is higher than the release pressure.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top