Magnetic and electric fields in relativity

Click For Summary
SUMMARY

The discussion focuses on the derivation of motion equations for charged particles in electric fields within the framework of special relativity. Key equations include the relationships between velocity components \(v_x\) and \(v_y\) and their dependence on the Lorentz factor \(\gamma\), charge \(q\), electric field \(E\), and initial momentum components \(p_{0x}\) and \(p_{0y}\). The final expressions for position as functions of time are derived as \(x(t)\) and \(y(t)\), incorporating logarithmic and inverse hyperbolic sine functions. The participants seek clarification on the consistency of their results and methods for evaluating limits in specific scenarios.

PREREQUISITES
  • Understanding of special relativity concepts, particularly Lorentz transformations.
  • Familiarity with electromagnetism, specifically the behavior of charged particles in electric fields.
  • Proficiency in calculus, particularly integration techniques for motion equations.
  • Knowledge of hyperbolic functions and their properties.
NEXT STEPS
  • Explore the derivation of Lorentz transformations in detail.
  • Study the implications of electric fields on charged particle trajectories in relativistic contexts.
  • Investigate the use of hyperbolic functions in physics, particularly in relation to motion and energy.
  • Learn about the limits of relativistic equations as velocity approaches the speed of light.
USEFUL FOR

Physicists, students of theoretical physics, and engineers working with particle dynamics in electromagnetic fields will benefit from this discussion.

Frostman
Messages
114
Reaction score
17
Homework Statement
In an inertial reference system there is a uniform and constant electric field ##\vec E## parallel to the x-axis. Given a particle of charge ##q## and mass ##m## that at the instant ##t = 0## is at the point ##r_0 = (x_0, y_0, 0)##, with relativistic moment ##p_0 = (p_{0x}, p_{0y}, 0)##.
1. Solve the relativistic equations of motion and derive the hourly law, that is ##x(t)## and ##y(t)##.
2. Using the results of point 1., derive the Newtonian limit of the hourly law. Comment on the results obtained.
3. Using the results of point 2., calculate the hourly law at large ##t##. Comment on the results obtained.
Relevant Equations
EOM
I started from:
$$\frac{d}{dt}(m\gamma v_x)=qE\ \ \ \rightarrow \ \ \ m\gamma v_x - p_{0x}=qE(t-0)\ \ \ \rightarrow \ \ \ m\gamma v_x=qEt+p_{0x}
$$$$\frac{d}{dt}(m\gamma v_y)=0\ \ \ \rightarrow \ \ \ m\gamma v_y -p_{0y}=0\ \ \ \rightarrow \ \ \ m\gamma v_y = p_{0y}$$$$\frac{d}{dt}(m\gamma v_z)=0\ \ \ \rightarrow \ \ \ m\gamma v_z = 0\ \ \ \rightarrow \ \ \ v_z=0$$
We observe first of all that the motion takes place only in the xy-plane.
We add and square the two relations:
$$m_vx=\frac{qEt+p_{0x}}{\gamma}\ \ \ \rightarrow \ \ \ m^2v_x^2=\frac{(qEt)^2+p_{0x}+2qEtp_{0x}}{\gamma^2}$$$$mv_y=\frac{p_{0y}}{\gamma}\ \ \ \rightarrow \ \ \ m^2v_y^2=\frac{p_{0y}^2}{\gamma^2}$$
$$m^2(v_x^2+v_y^2)=\frac{(qEt)^2+2qEtp_{0x}+p_{0x}^2+p_{0y}^2}{\gamma^2}\ \ \ \rightarrow \ \ \ \gamma^2=\frac{(qEt)^2+2qEtp_{0x}+p_0^2+m^2}{m^2}$$
$$\gamma=\frac 1m \sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}$$

Where:

##v_x^2+v_y^2=v^2=\frac{\gamma^2-1}{\gamma^2}##
##p_{0x}^2+p_{0y}^2=p_0^2##
##\mathcal{E}_0^2=p_0^2+m^2##

Now we can substitute in the initial equations:
$$mv_x=\frac{qEt+p_{0x}}{\gamma}\ \ \ \rightarrow \ \ \ \frac{dx}{dt}=\frac{qEt+p_{0x}}{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}}$$
$$mv_y=\frac{p_{0y}}{\gamma}\ \ \ \rightarrow \ \ \ \frac{dy}{dt}=\frac{p_{0y}}{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}}$$

Integrating:
$$x-x_0=\int_0^t dt \frac{qEt+p_{0x}}{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}}=\frac{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}}{qE}\Bigg|_0^t=\frac{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}-\mathcal{E}_0}{qE}$$
$$y-y_0=\int_0^t dt\frac{p_{0y}}{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}}=\frac{p_{0y} \log({\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}+qEt+p_{0x}})}{qE}\Bigg|_0^t=\frac{p_{0y} \log({\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}+qEt+p_{0x}})-p_{0y}\log (\mathcal{E}_0+p_{0x})}{qE}$$

I find:
$$x(t)=\frac{\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}-\mathcal{E}_0}{qE}+x_0$$
$$y(t)=\frac{p_{0y} \log({\sqrt{\mathcal{E}_0^2+(qEt)^2+2qEtp_{0x}t}+qEt+p_{0x}})-p_{0y}\log (\mathcal{E}_0+p_{0x})}{qE}+y_0$$

But I don't find the error ...
 
Last edited:
Physics news on Phys.org
From the top three lines I observe
\frac{v_x}{\sqrt{1-v^2}}=\frac{qEt}{m}+\frac{p_{0x}}{m}
\frac{v_y}{\sqrt{1-v^2}}=\frac{p_{0y}}{m}
where
v^2=v_x^2+v_y^2
Adding squared formula side by side we get
v^2=\frac{Q}{1+Q}
where
Q:=(\frac{qEt}{m}+\frac{p_{0x}}{m})^2+(\frac{p_{0y}}{m})^2
So
v_x=[\frac{qEt}{m}+\frac{p_{0x}}{m}]\frac{1}{\sqrt{1+Q}}
v_y=\frac{p_{0y}}{m}\frac{1}{\sqrt{1+Q}}
The second equation says ##v_y## decreases with time. Conservation of y-momentum requires reducing ##v_y##.

x(t)=\int_0^t [\frac{qEt}{m}+\frac{p_{0x}}{m}]\frac{1}{\sqrt{1+Q}}dt+x_0
y(t)=\int_0^t \frac{p_{0y}}{m}\frac{1}{\sqrt{1+Q}}dt +y_0

Introducing T
\frac{qE}{m}t+\frac{p_{0x}}{m}=\frac{qE}{m}T

x(t)=\int_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}} \frac{T}{\sqrt{T^2+\frac{1+(\ \frac{p_{0y}}{m}\ )^2}{(\frac{qE}{m})^2}}}dT+x_0
=[(t+\frac{p_{0x}}{qE})^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2} ]^{1/2}-[(\frac{p_{0x}}{qE})^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2} ]^{1/2} +x_0

y(t)=\int_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}} \frac{\frac{p_{0y}}{qE}}{\sqrt{T^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2}}}dT+y_0
=\frac{p_{0y}}{qE}[sinh^{-1} (\frac{|qE|T}{\sqrt{m^2+p_{0y}^2}})]_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}}+y_0

At the last integral calculation, you use log function form and I use arcsinh function form which are equivalent. Is this consistent with your result?
 
Last edited:
anuttarasammyak said:
From the top three lines I observe
\frac{v_x}{\sqrt{1-v^2}}=\frac{qEt}{m}+\frac{p_{0x}}{m}
\frac{v_y}{\sqrt{1-v^2}}=\frac{p_{0y}}{m}
where
v^2=v_x^2+v_y^2
Adding squared formula side by side we get
v^2=\frac{Q}{1+Q}
where
Q:=(\frac{qEt}{m}+\frac{p_{0x}}{m})^2+(\frac{p_{0y}}{m})^2
So
v_x=[\frac{qEt}{m}+\frac{p_{0x}}{m}]\frac{1}{\sqrt{1+Q}}
v_y=\frac{p_{0y}}{m}\frac{1}{\sqrt{1+Q}}
The second equation says ##v_y## decreases with time. Conservation of y-momentum requires reducing ##v_y##.

x(t)=\int_0^t [\frac{qEt}{m}+\frac{p_{0x}}{m}]\frac{1}{\sqrt{1+Q}}dt+x_0
y(t)=\int_0^t \frac{p_{0y}}{m}\frac{1}{\sqrt{1+Q}}dt +y_0

Introducing T
\frac{qE}{m}t+\frac{p_{0x}}{m}=\frac{qE}{m}T

x(t)=\int_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}} \frac{T}{\sqrt{T^2+\frac{1+(\ \frac{p_{0y}}{m}\ )^2}{(\frac{qE}{m})^2}}}dT+x_0
=[(t+\frac{p_{0x}}{qE})^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2} ]^{1/2}-[(\frac{p_{0x}}{qE})^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2} ]^{1/2} +x_0

y(t)=\int_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}} \frac{\frac{p_{0y}}{qE}}{\sqrt{T^2+\frac{1+(\frac{p_{0y}}{m})^2}{(\frac{qE}{m})^2}}}dT+y_0
=\frac{p_{0y}}{qE}[sinh^{-1} (\frac{|qE|T}{\sqrt{m^2+p_{0y}^2}})]_{\frac{p_{0x}}{qE}}^{t+\frac{p_{0x}}{qE}}+y_0

At the last integral calculation, you use log function form and I use arcsinh function form which are equivalent. Is this consistent with your result?

I followed your steps and it all comes back to me, but I can't get from my result to yours.
In any case, I evaluated both in mine and in your result also the case in which ##t = 0##. So both ##x## and ##y## are equal to their initial components.

Now, if I want to solve the II and III point, I should evaluate in the first case the fact that ##v\ll 1## and ##t\rightarrow +\infty## in the second case.

But I don't know how to proceed other than replacing ##\mathcal{E}_0## with ##m##. How can I develop my ##x(t)## and ##y(t)##?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
9
Views
2K
Replies
19
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
8
Views
5K