Magnetic Field and Poynting Flux in a Charging Capacitor

AI Thread Summary
The discussion centers on calculating the Poynting vector and total energy flow in a charging circular capacitor. The user successfully derived the Poynting vector expression but is struggling with the integration process to find the total energy U. They need to integrate the Poynting vector over the surface area connecting the capacitor plates and then over time. Clarification is sought on which variables to treat as constants during integration and the correct setup for the two-step integration process. The user is specifically confused about the integration limits and the variables involved in each step.
dmaling1
Messages
2
Reaction score
0
This is a two part question. I completed the 1st part, but I am having a difficult time on the second part. I have one try remaining.

Magnetic Field and Poynting Flux in a Charging Capacitor-

When a circular capacitor with radius and plate separation is charged up, the electric field , and hence the electric flux , between the plates changes. According to Ampère's law as extended by Maxwell, this change in flux induces a magnetic field that can be found from

integral of B * dl = Mu 0 (i + Epsilon 0 (delta flux/delta t)) = ampere maxwell law

We can solve this equation to obtain the field inside a capacitor:

B(r) = Mu 0 (ir/2piR^2) theta

where r is the radial distance from the axis of the capacitor.

Part A.) Find an expression for the magnitude of the Poynting vector S on the surface that connects the edges of the two circular plates.

S = 1/Mu 0 (E X B) = S(t) = (i^2/(2pi^2R^3epsilon 0))t


Part B.) Calculate the the total amount of energy U that flows into the space between the capacitor plates from t= 0 to t= T, by first integrating the Poynting vector over the surface that connects the edges of the two circular plates, and then integrating over time.

Here is where I am unsure where to go.

I believe we will need to integrate S*Area, where the area is 2piRd, twice like they said, once respecting to the d distance, and again w/ respect to time. I am having a tough time with the setup, and which we are constants/variables in the integration.

Thanks in advance
 

Attachments

  • physicsquestn.jpg
    physicsquestn.jpg
    6 KB · Views: 1,637
Physics news on Phys.org
Is the current i supposed to be constant? If so, since S(t) = (i^2/(2pi^2R^3epsilon 0))t represents energy flow per unit area, multiplying it by 2piRd would give you the rate of energy flow. Integrating the resulting equation with respect to t would give you U.
 
dmaling1 said:
I believe we will need to integrate S*Area, where the area is 2piRd, twice like they said, once respecting to the d distance, and again w/ respect to time. I am having a tough time with the setup, and which we are constants/variables in the integration.

Thanks in advance


Yes, that's what they want us to do, but first integrate respect to distance, then integrate again with respect to time. I am confused how to go about this. What do i integrate with respect to for the two different integrations?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top