Magnetic field produced by linear current in COMSOL

AI Thread Summary
The discussion centers on discrepancies in magnetic field values obtained from a COMSOL simulation of a linear current in a wire. The user reports that while the theoretical magnetic field at 1 mm from a 10 A current should be 0.002 T, the simulation shows values around 0.3 T in 3D, which do not align with expectations. The user has confirmed that the 2D model matches theoretical values, leading to confusion about the 3D results. Suggestions include checking boundary conditions and modifying wire length, but these adjustments have not resolved the issue. The user is also puzzled by the unexpected shape of the magnetic flux, which deviates from the expected circular pattern.
Caleydos
Messages
4
Reaction score
0
TL;DR Summary
Issue with COMSOL 5.5 when trying to calculate the magnetic field produced by linear current in 3D
Hello,

I have used an edge current of 10 A through a 0,45 cm (lenght) wire inside an air sphere. The thing is that, according with Ampere law, the magnetic field (B) produced at a 1 mm of distance from the wire shall be 0,002 T, and I am obtaining much higher values in this simulation (around 0,3 T at his point).

I have done it in 2D and result is OK, according with theoretical values, but I do not know why in 3D it changes. Any idea please?

Many thanks in advance
 

Attachments

  • Esfera 1 m de radio zoom.png
    Esfera 1 m de radio zoom.png
    56.5 KB · Views: 169
Engineering news on Phys.org
Can you post a picture of the geometry in 2D and in 3D?
 
Sure! I attach them here. Thanks a lot!

First one is the 3D model (lateral view), showing the value of the magnetic flux density in COMSOL 5.5 (this value do not matches with theoretical)

The second one is 2D in COMSOL 3.5, this value really matches with theoretical
 

Attachments

  • Flujo campo en modelo 3D (esfera 20 cm). 0,1 T a 2 cm del centro del conductor.png
    Flujo campo en modelo 3D (esfera 20 cm). 0,1 T a 2 cm del centro del conductor.png
    42.5 KB · Views: 147
  • Magnetic Flux density at 1mm (2mT).png
    Magnetic Flux density at 1mm (2mT).png
    41.1 KB · Views: 175
There is something strange going on, for instance:
Flujo campo en modelo 3D (esfera 20 cm). 0,1 T a 2 cm del centro del conductor.png


Check the boundary conditions.
 
Thanks a lot for your reply.

This is one of the things that I supossed in the beggining, but I made the boundary sphere wider and the result is the same (see attached). It seems the magnetic flux shown in the boundary layer is debt to the sphere is very small. Any other idea?
 

Attachments

  • Magnetic flux density long wire 10 amps (0.5 T at 1mm).png
    Magnetic flux density long wire 10 amps (0.5 T at 1mm).png
    18.7 KB · Views: 143
I have tried modifying the length of the wire, magnetic flux should remain the same, but it isn´t. It seems the longer wire produces more flux at 1mm (it makes no sense).

On the other hand, I do not understan why this shape in the magnetic flux, it should be purely circular.
 

Attachments

  • Magnetic flux density long wire 10 amps (0.5 T at 1mm).png
    Magnetic flux density long wire 10 amps (0.5 T at 1mm).png
    18.7 KB · Views: 138
  • Magnetic flux density very long wire 10 amps (0.8 T at 1mm).png
    Magnetic flux density very long wire 10 amps (0.8 T at 1mm).png
    62.8 KB · Views: 125
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top