1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Magnetic Flux Through a Wire Coil

  1. Apr 7, 2007 #1


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member


    This problem confused me the first time around, but I think I've got it. I just want a confirmation that my reasoning is correct. I know I have the correct answer, but what is important is the method of arriving at it.

    1. The problem statement, all variables and given/known data
    A wire is being wound around a rotating wooden cylinder of radius R. One end of the wire is connected to the axis of the cylinder. The cylinder is placed in a uniform magnetic field of magnitude B parallel to its axis and rotates at N revolutions per second. What is the potential difference between the two open ends of the wire?

    2. Relevant equations

    [tex] \oint \mathbf{E} \cdot d\mathbf{l} = - \frac{d}{dt}\int_A \mathbf{B} \cdot \mathbf{\hat{n}} \, dA [/tex]

    which can be written as

    [tex] \textrm{emf} = -\frac{d\Phi_B}{dt} [/tex]

    3. The attempt at a solution

    Here is my reasoning, which I want checked:

    The potential difference is determined by the rate of change of magnetic flux through the coil in between the two ends of the wire. Since this coil keeps growing, the flux is indeed changing. Each turn of the coil has magnetic flux [itex] B \pi R^2 [/itex] through it, and each revolution of the cylinder adds a turn. There are N revolutions per second, which means that the coil increases by N turns per second. The flux therefore increases by [itex] NB \pi R^2 [/itex] every second; this is its rate of change and is therefore equal (at least in magnitude) to the potential difference between the two ends of the wire.
  2. jcsd
  3. Apr 7, 2007 #2


    User Avatar
    Science Advisor
    Gold Member

    This looks correct to me.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook