Magnitude of electric field/Need answer checked

  • Thread starter Thread starter WestTXcollegekid
  • Start date Start date
  • Tags Tags
    Electric Magnitude
AI Thread Summary
The discussion centers on calculating the electric field between the inner and outer cylinders of a coaxial cable, where the inner cylinder has a uniform positive charge per unit length λ. The derived electric field expression is E = λ / (2πε0r), which is confirmed as correct by the participants. Concerns are raised about the absence of some variables in the final equation, prompting a request for clarification on how the relevant equations were applied. The importance of showing detailed steps in the solution process is emphasized, especially given the limited attempts remaining. The conversation highlights the need for thorough verification of calculations in physics problems.
WestTXcollegekid
Messages
4
Reaction score
0

Homework Statement


A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius band outer radius c. The outer cylinder is mounted on insulating supports and has no net charge. The inner cylinder has a uniform positive charge per unit length λ.
Calculate the magnitude of the electric field at any point between the cylinders a distance r from the axis.
Express your answer in terms of the variables a, b, c, r, λ and constants π and ϵ0.

Homework Equations


E=(1/4πϵ0)(q/r^2)
q= λ2πr

The Attempt at a Solution


Using the equation above I got (E= λ/2ϵ0r). I just want to make sure that I'm not missing anything. I only have one attempt left at answering the question.
 
Physics news on Phys.org
How did your relevant equations help you in the solution phase ? I see a lot of the problem variables not appearing in there. Please show your steps in part 3.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top