Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mandl & Shaw page 263

  1. Jul 29, 2013 #1
    In the second edition of Mandl & Shaw QFT, on page 263, below eqn (12.75) he says (I am freely paraphrasing)

    [itex]\frac{\delta}{\delta\theta(z)}[/itex] commutes with [itex]\theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1)[/itex] because [itex]\theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1)[/itex] is bilinear in the Grassmann fields [itex]\theta[/itex] and [itex]\tilde{\theta}[/itex]

    By eqn (12.72a), [itex]\frac{\delta}{\delta\theta(z)}[/itex] anti-commutes with [itex]\tilde{\theta}(y_1)[/itex], so it would be sufficient to show that it also anti-commutes with [itex]\theta(x_1)[/itex]. However, by eqn (12.70) they do not anti-commute. Instead we have [itex][\frac{\delta}{\delta\theta(z)}, \theta(x_1)]_+ = \delta^{(4)}(z - x_1)[/itex].

    What am I missing?
     
  2. jcsd
  3. Jul 29, 2013 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    They commute as Grassmann variables, i.e. the diff. operator has parity 1 and the product has parity 0, thus it doesn't matter on which of the products of 3 in the infinite product you decide to act with the derivative first. You can start from the leftmost term, or with the rightmost one, or you can squeeze it in the middle (jokingly if you can find the middle term of an infinite product :D).
     
  4. Jul 29, 2013 #3
    I can do that by noting that the products of 3 commute. All I have to do is commute them one at a time to the left and then act on the leftmost one with the derivative. That's how I was able to derive eqn (12.76). However, that's different from saying that the derivative commutes with the product of 3. In other words, I can get

    [tex]\frac{\delta}{\delta\theta(z)}\theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1) \theta(x_2)K(x_2,y_2) \tilde{\theta}(y_2) = \frac{\delta}{\delta\theta(z)}\theta(x_2)K(x_2,y_2)\tilde{\theta}(y_2) \theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1)[/tex]

    but how do I get

    [tex]\frac{\delta}{\delta\theta(z)}\theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1) \theta(x_2)K(x_2,y_2)\tilde{\theta}(y_2) = \theta(x_1)K(x_1,y_1)\tilde{\theta}(y_1)\frac{\delta}{\delta\theta(z)} \theta(x_2)K(x_2,y_2)\tilde{\theta}(y_2)[/tex]

    when [itex]\frac{\delta}{\delta\theta(z)}[/itex] anticommutes with [itex]\tilde{\theta}(y_1)[/itex] but not with [itex]\theta(x_1)[/itex]?
     
  5. Jul 29, 2013 #4

    Avodyne

    User Avatar
    Science Advisor

    Your 2nd equation is wrong. Is this eq in M&S? I suspect you are over-interpreting their words (I don't have the book to check), and that all they are doing is keeping track of relative minus signs.
     
  6. Jul 29, 2013 #5
    The exact wording is:

    I agree that my second eqn is wrong, and I also suspect that I am mis-interpreting their words. But what is the correct interpretation?
     
  7. Jul 30, 2013 #6

    Avodyne

    User Avatar
    Science Advisor

    This is badly worded by M&S; it is not correct as written. I believe that all they are trying to say that if you move a Grassmann derivative through an even number of Grassmann variables, then the overall sign is +.
     
  8. Aug 1, 2013 #7
    yes,you are misinterpreting the words.He is saying that two terms like [θ(x1)k(x1,y1-(y1)] and [θ(x2)k(x2,y2-(y2)] are bilinear(and so on).So they commute with each other i.e. you can write them in reverse order because every θ will pass through even number of θ's so there will not be any change of sign.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Mandl & Shaw page 263
  1. Mandl & Shaw page 297 (Replies: 8)

  2. Mandl & Shaw page 361 (Replies: 24)

Loading...