Manipulating Formulas with Derivatives

Bernie Hunt
Messages
19
Reaction score
0
The Problem;
Given H = U + PV and dU = TdS - PdV
Find dH in terms of T, S, P, V

My Solution;

H = U + PV
dH = dU + PdV + VdP
dH = (TdS - PdV) + PdV + VdP
dH = Tds + VdP

My Question

Am I missing a step between the first and second steps? I'm taking the derivative of both sides, but not specifying what the derivative is in respect to. (bad English, sorry)

I learn this short hand from some physics guys, but I'm looking for the strict mathematical method.
Any suggestions?

Thanks,
Bernie
 
Physics news on Phys.org
One way to make sense of what they're doing is via differential forms. If the sequence xi are generalized coordinates on (a local patch of) the state space, so that any function f on the state space can be represented as a function of the xi's, then one property of differential forms is that

<br /> df = \sum_i \frac{\partial f}{\partial x_i} dx_i,<br />

which, formally, looks just like the chain rule. Because of the formal similarity, differentials share many of the same properties as derivatives, such as
d(fg) = f dg + g df.​

(Some formulations of differential forms take this property as part of the definition)



(In differential geometry, it is customary to write i as a superscript, not a subscript. But I wrote it this way becuase I figured it was probably more familiar to you. In particular, so that it doesn't look like exponentiation)
 
Last edited:
Thanks for your reply Hurkyl.

I haven't had DE yet, so I can't really comment on your reply.

Bernie
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top