A Manipulation with the Dirac equation

spaghetti3451
Messages
1,311
Reaction score
31
I know that the Dirac equation is ##i\gamma^{\mu}\partial_{\mu}\psi=m\psi##.

How do I use this to show that ##(\partial_{\mu}\bar{\psi})\gamma^{\mu}=im\bar{\psi}##?
 
Physics news on Phys.org
First of all you have (in the usual standard representations of the Dirac matrices)
$$\gamma^{\mu \dagger}=\gamma^0 \gamma^{\mu} \gamma^0,$$
the "pseudo-hermitecity relation" and the definition
$$\overline{\psi}=\psi^{\dagger} \gamma^0.$$
So now take the Dirac equation and first apply Hermitean conjugation:
$$-\mathrm{i} \partial_{\mu} \psi^{\dagger} \gamma^{\mu \dagger}=m\psi^{\dagger}.$$
Now use ##(\gamma^0)^2=1## to first write on the left-hand side
$$-\mathrm{i} \partial_{\mu} \overline{\psi} \gamma^0 \gamma^{\mu \dagger} = m \psi^{\dagger}.$$
Finally multiply this equation with ##\gamma^0## and use the pseudo-hermitecity relation of the Dirac matrices to finally get the claimed equation:
$$-\mathrm{i} \partial_{\mu} \overline{\psi} \gamma^{\mu}=m \overline{\psi}.$$
 
  • Like
Likes spaghetti3451
How do you get from Psi to Psi-bar in the absence of a symmetric Lagrangian? @vanhees71 this smells like a homework problem (incorrectly placed outside the HW section), so I wouldn't throw in the solution.
 
What has the Lagrangian to do with basic definitions of the ##\gamma## matrices and bispinors?
 
Well, the Dirac equation in line 1 is one of the two Euler-Lagrange equations for the symmetrized Lagrangian density. The other Euler-Lagrange equation is the one whose derivation he sought. Your solution is direct, I was trying to lead him there.
 
  • Like
Likes vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top