Manometer containing two liquids

Click For Summary
The discussion revolves around solving a manometer problem involving two liquids, where specific pressures and densities are given. The equations derived from three loops relate the pressures and heights of the liquids in the manometer. The user expresses difficulty in finding two missing unknowns in the calculations. They have already determined some values but are seeking further clarification on how to proceed. Ultimately, the user has found a solution to their problem.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
The manometer in the figure contains two liquids A and B arranged as shown. Between the two liquids there is an area containing air. If the relative pressure of liquid A is ##p_A^r=-0,11\, \textrm{at}## and its relative density is ##\rho_A^r=1,6##, calculate the relative density ##\rho_B^r## of liquid B.

Solution: ##\rho_B=1##.
Relevant Equations
Equations of loops
Figure:
8DC2C0CD-B8D3-4B97-BF99-4A5957BF4B58.jpeg


$$p_A^r=-0,11\, \textrm{at}\rightarrow p_A=90534\, \textrm{Pa}$$
$$\rho_A^r=1,6\rightarrow \rho_A=\rho_{AR}\cdot \rho_{H2O}=1600\, \textrm{kg}/\textrm{m}^3$$
$$\rho_1=1,225\, \textrm{kg}/\textrm{m}^3$$
$$\left.
\begin{array}{l}
\textrm{LOOP I}\rightarrow p_A-p_1=-\rho_A (Z_A-Z_1) \\
\textrm{LOOP II}\rightarrow p_1-p_2=-\rho_1(Z_1-Z_2) \\
\textrm{LOOP III}\rightarrow p_2-p_B=-\rho_B(Z_2-Z_B)
\end{array}\right\} \rightarrow$$
$$\rightarrow p_A-p_B=-\rho_A(Z_A-Z_1)-\rho_1(Z_1-Z_2)-\rho_B(Z_2-Z_B)\rightarrow$$
$$\rightarrow 90534-p_B=-720+0,833-\rho_B 0,38=-719,167-0,38\rho_B$$
In this exercise I am stuck because I don't know how to find the two missing unknowns.
 
Physics news on Phys.org
I have already found the solution, thank you!
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K