I Mapping between rotations and operations: sign & handedness

Strilanc
Science Advisor
Messages
612
Reaction score
229
I have a toy quantum circuit simulator that I work on. I want to visually represent operations in multiple ways: as a Hamiltonian, as a unitary matrix, and as a Bloch sphere rotation. I want to double-check that I haven't flipped anything.

I'll focus a concrete example: is this animation correct?

9qVpM6A.gif


We're in a right-handed coordinate system. Z points up, X points right, and Y points away. I have a qubit; perhaps embodied in the spin of an electron. I begin rotating the qubit around the X axis at 0.5 Hz, so that after a quarter second it's at been rotated by +45 degrees.

The Hamiltonian for this operation is ##H = X = \begin{bmatrix} 0&1\\1& 0\end{bmatrix}## (I think). The unitary form is:

##\begin{align} U(t) &= \exp(-i t H)\\&= \exp(-i t X)\\&= \exp(-i t (1)) \frac{1}{2} \begin{bmatrix} 1&1\\1&1 \end{bmatrix} + \exp(-i t (-1)) \frac{1}{2} \begin{bmatrix} 1&-1\\-1&1 \end{bmatrix} \\&=\frac{1}{2} \begin{bmatrix} e^{-it}+e^{it} & e^{-it}-e^{it} \\ e^{-it}-e^{it} & e^{-it}+e^{it} \end{bmatrix}\\&=\begin{bmatrix} \cos t & -i \sin t \\ -i \sin t & \cos t \end{bmatrix}\end{align}##

Does that all sound right? Did I make a sign error or a handedness error? The thing I'm most unsure about is the minus sign in ##\exp(-i t H)##. It seems... really unnecessary.
 
Physics news on Phys.org
Should det U = 1? If so, you must have a sign error in your last equation.
 
haruspex said:
Should det U = 1? If so, you must have a sign error in your last equation.

When I calculate the determinant, I get 1:

##\begin{align} \det \begin{bmatrix} \cos t & -i \sin t \\ -i \sin t & \cos t \end{bmatrix} &= (\cos t)^2 - (-i \sin t)^2 \\&= \cos^2 t - (-i)^2 \sin^2 t \\&= \cos^2 t - (-1) \sin^2 t \\&= \cos^2 t + \sin^2 t \\&= 1 \end{align}##
 
Strilanc said:
When I calculate the determinant, I get 1:

##\begin{align} \det \begin{bmatrix} \cos t & -i \sin t \\ -i \sin t & \cos t \end{bmatrix} &= (\cos t)^2 - (-i \sin t)^2 \\&= \cos^2 t - (-i)^2 \sin^2 t \\&= \cos^2 t - (-1) \sin^2 t \\&= \cos^2 t + \sin^2 t \\&= 1 \end{align}##
Sorry, you're right. I lost track of the number of negations.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top