Ziang said:
Yes, I would like to see how SR potential energy look like in simple cases like constant gravitational acceleration. "Good enough" is good enough. :)
I think you'll need tensor methods usually associated with GR to work this out. I'll take a stab at how it goes. Unfortunately I can't gurantee I won't make errors.
If we take "constant gravitational acceleration" to be the Rindler metric, then there is at least a conserved notion of total energy. There are several variants of the RIndler metric one might use, I would use
*CORRECTION*
$$-\left(1+gz\right)^2 \left(\frac{dt}{d\tau}\right)^2 + \left(\frac{dx}{d\tau}\right)^2 + \left(\frac{dy}{d\tau}\right)^2+\left(\frac{dz}{d\tau}\right)^2$$
This replaces the Minkoskii metric for an inertial observer
$$-dt^2 + dx^2 + dy^2 + dz^2$$
I've used geometric units for both the Rindler and Minkowskii metrics, which is how I avoid having the constant c (the speed of light) appear in the metric tensor.
If we let ##t=x^0, x=x^1, y=x^2, z=x^3## we have the energy momentum 4-vector ##E^i## and it's co-vector ##E_i##. They are related by the usual method of raising and lowering indices with the metric tensor, i.e. ## E^i = g^{ij} E_j ## and ##E_i = g_{ij} E^j##.
The metric tensor, and the associated need for vectors and coverctors, make the formulation a bit more complicated if one isn't familiar with tensor methods already.
The only component of the metric tensor that's neither zero nor unity is ##g_{00}## which is a negative number with the chosen sign convention, ##g_{00} = -(1+gz)^2##. The corresponding inverse metric has ##g^{00} = -1/(1+gz)^2##.
We have a static space-time, so we can use the same techniques to define various conserved quantities, of which there is the conserved energy ##E_0##, the covector component of the energy-momentum 4-vector, and two momenta, ##E_1## and ##E_2##. ##E_3## won't be conserved. By "conserved" I mean that ##E_0, E_1, E_2## are all constant for an object with no forces acting on it, i.e. an object following a space-time geodesic.
There may be some sign issues remaining here, but regardless of the best choice of sign, the above are constants of motion.
We can then find that ##E^0 = m \frac{dt}{d\tau} = g^{00} E_0## so we wind up with ##E^0 = -\frac{E_0}{(1+gz)^2}## with ##E_0## being some constant of motion that we call "energy". I'm not aware of any scheme to break up total energy into "kinetic energy" and "potential energy" in this formulation, but the expression for total energy is of some interest.
The other formula we mainly need is that ##E^i E_i = -m^2##, the tensor version of ##E^2 = (pc)^2 + m^2##. Using this relationship, we can find, for instance the value of ##dz/d\tau## given the conserved constants of motion of the object representing "energy" ##E_0##, "x-momentum" ##E_1## and "y-momentum" ##E_2##. "z-momentum", isn't conserved, but we can calculate ##\frac{dz}{d\tau}## knowing the other conserved quantities ##E_0, E_1, E_2##, the invariant mass ##E^i E_i##, and the z-coordinate of the object much as we might calculate the velocity of a falling object knowing it's energy, x & y momentum, and it's current height in the Newtonian case.